Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Mol Biol Cell ; : mbcE24080370, 2024 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-39504452

RESUMO

Epithelial-to-mesenchymal transition (EMT) allows cancer cells to metastasize while acquiring resistance to apoptosis and chemotherapeutic agents with significant implications for patients' prognosis and survival. Despite its clinical relevance, the mechanisms initiating EMT during cancer progression remain poorly understood. We demonstrate that DNA damage triggers EMT and that activation of PARP and the PARP-dependent chromatin remodeler ALC1 (CHD1L) was required for this response. Our results suggest that this activation directly facilitates access to the chromatin of EMT transcriptional factors (TFs) which then initiate cell reprogramming. We also show that EMT-TFs bind to the RAD51 promoter to stimulate its expression and to promote DNA repair by homologous recombination (HR). Importantly, a clinically relevant PARP inhibitor reversed or prevented EMT in response to DNA damage while resensitizing tumor cells to other genotoxic agents. Overall, our observations shed light on the intricate relationship between EMT, DNA damage response, and PARP inhibitors, providing potential insights for in cancer therapeutics.

3.
Mol Cell ; 84(13): 2490-2510.e9, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996459

RESUMO

The formation of dynamic protein filaments contributes to various biological functions by clustering individual molecules together and enhancing their binding to ligands. We report such a propensity for the BTB domains of certain proteins from the ZBTB family, a large eukaryotic transcription factor family implicated in differentiation and cancer. Working with Xenopus laevis and human proteins, we solved the crystal structures of filaments formed by dimers of the BTB domains of ZBTB8A and ZBTB18 and demonstrated concentration-dependent higher-order assemblies of these dimers in solution. In cells, the BTB-domain filamentation supports clustering of full-length human ZBTB8A and ZBTB18 into dynamic nuclear foci and contributes to the ZBTB18-mediated repression of a reporter gene. The BTB domains of up to 21 human ZBTB family members and two related proteins, NACC1 and NACC2, are predicted to behave in a similar manner. Our results suggest that filamentation is a more common feature of transcription factors than is currently appreciated.


Assuntos
Domínio BTB-POZ , Fatores de Transcrição , Proteínas de Xenopus , Animais , Humanos , Núcleo Celular/metabolismo , Núcleo Celular/genética , Cristalografia por Raios X , Células HEK293 , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Xenopus laevis , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/química
4.
EMBO J ; 43(14): 2929-2953, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834853

RESUMO

PARP-catalysed ADP-ribosylation (ADPr) is important in regulating various cellular pathways. Until recently, PARP-dependent mono-ADP-ribosylation has been poorly understood due to the lack of sensitive detection methods. Here, we utilised an improved antibody to detect mono-ADP-ribosylation. We visualised endogenous interferon (IFN)-induced ADP-ribosylation and show that PARP14 is a major enzyme responsible for this modification. Fittingly, this signalling is reversed by the macrodomain from SARS-CoV-2 (Mac1), providing a possible mechanism by which Mac1 counteracts the activity of antiviral PARPs. Our data also elucidate a major role of PARP9 and its binding partner, the E3 ubiquitin ligase DTX3L, in regulating PARP14 activity through protein-protein interactions and by the hydrolytic activity of PARP9 macrodomain 1. Finally, we also present the first visualisation of ADPr-dependent ubiquitylation in the IFN response. These approaches should further advance our understanding of IFN-induced ADPr and ubiquitin signalling processes and could shed light on how different pathogens avoid such defence pathways.


Assuntos
ADP-Ribosilação , Interferons , Poli(ADP-Ribose) Polimerases , Ubiquitina-Proteína Ligases , Humanos , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Interferons/metabolismo , Ubiquitinação , Células HEK293 , SARS-CoV-2/metabolismo , Transdução de Sinais , COVID-19/virologia , COVID-19/metabolismo , Proteínas de Neoplasias
5.
Nucleic Acids Res ; 52(12): 6994-7011, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38828775

RESUMO

The clinical success of PARP1/2 inhibitors (PARPi) prompts the expansion of their applicability beyond homologous recombination deficiency. Here, we demonstrate that the loss of the accessory subunits of DNA polymerase epsilon, POLE3 and POLE4, sensitizes cells to PARPi. We show that the sensitivity of POLE4 knockouts is not due to compromised response to DNA damage or homologous recombination deficiency. Instead, POLE4 loss affects replication speed leading to the accumulation of single-stranded DNA gaps behind replication forks upon PARPi treatment, due to impaired post-replicative repair. POLE4 knockouts elicit elevated replication stress signaling involving ATR and DNA-PK. We find POLE4 to act parallel to BRCA1 in inducing sensitivity to PARPi and counteracts acquired resistance associated with restoration of homologous recombination. Altogether, our findings establish POLE4 as a promising target to improve PARPi driven therapies and hamper acquired PARPi resistance.


Assuntos
Proteína BRCA1 , DNA Polimerase II , Replicação do DNA , Inibidores de Poli(ADP-Ribose) Polimerases , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , DNA Polimerase II/metabolismo , DNA Polimerase II/genética , Replicação do DNA/efeitos dos fármacos , Dano ao DNA , Linhagem Celular Tumoral , Recombinação Homóloga/genética , Recombinação Homóloga/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética
6.
Proc Natl Acad Sci U S A ; 121(25): e2322689121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38865276

RESUMO

Poly(ADP-ribose) polymerase 1 (PARP1) has emerged as a central target for cancer therapies due to the ability of PARP inhibitors to specifically kill tumors deficient for DNA repair by homologous recombination. Upon DNA damage, PARP1 quickly binds to DNA breaks and triggers ADP-ribosylation signaling. ADP-ribosylation is important for the recruitment of various factors to sites of damage, as well as for the timely dissociation of PARP1 from DNA breaks. Indeed, PARP1 becomes trapped at DNA breaks in the presence of PARP inhibitors, a mechanism underlying the cytotoxitiy of these inhibitors. Therefore, any cellular process influencing trapping is thought to impact PARP inhibitor efficiency, potentially leading to acquired resistance in patients treated with these drugs. There are numerous ADP-ribosylation targets after DNA damage, including PARP1 itself as well as histones. While recent findings reported that the automodification of PARP1 promotes its release from the DNA lesions, the potential impact of other ADP-ribosylated proteins on this process remains unknown. Here, we demonstrate that histone ADP-ribosylation is also crucial for the timely dissipation of PARP1 from the lesions, thus contributing to cellular resistance to PARP inhibitors. Considering the crosstalk between ADP-ribosylation and other histone marks, our findings open interesting perspectives for the development of more efficient PARP inhibitor-driven cancer therapies.


Assuntos
ADP-Ribosilação , Histonas , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Histonas/metabolismo , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/genética
7.
Mol Biol Cell ; 35(3): br7, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38170578

RESUMO

ADP-ribosylation signaling orchestrates the recruitment of various repair actors and chromatin remodeling processes promoting access to lesions during the early stages of the DNA damage response. The chromatin remodeler complex ACF, composed of the ATPase subunit SMARCA5/SNF2H and the cofactor ACF1/BAZ1A, is among the factors that accumulate at DNA lesions in an ADP-ribosylation dependent manner. In this work, we show that each subunit of the ACF complex accumulates to DNA breaks independently from its partner. Furthermore, we demonstrate that the recruitment of SMARCA5 and ACF1 to sites of damage is not due to direct binding to the ADP-ribose moieties but due to facilitated DNA binding at relaxed ADP-ribosylated chromatin. Therefore, our work provides new insights regarding the mechanisms underlying the timely accumulation of ACF1 and SMARCA5 to DNA lesions, where they contribute to efficient DNA damage resolution.


Assuntos
Cromatina , Dano ao DNA , DNA/metabolismo , Adenosina Trifosfatases/metabolismo , Reparo do DNA , ADP-Ribosilação
8.
Int J Mol Sci ; 24(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37958958

RESUMO

Chromatin is now regarded as a heterogeneous and dynamic structure occupying a non-random position within the cell nucleus, where it plays a key role in regulating various functions of the genome. This current view of chromatin has emerged thanks to high spatiotemporal resolution imaging, among other new technologies developed in the last decade. In addition to challenging early assumptions of chromatin being regular and static, high spatiotemporal resolution imaging made it possible to visualize and characterize different chromatin structures such as clutches, domains and compartments. More specifically, super-resolution microscopy facilitates the study of different cellular processes at a nucleosome scale, providing a multi-scale view of chromatin behavior within the nucleus in different environments. In this review, we describe recent imaging techniques to study the dynamic organization of chromatin at high spatiotemporal resolution. We also discuss recent findings, elucidated by these techniques, on the chromatin landscape during different cellular processes, with an emphasis on the DNA damage response.


Assuntos
Cromatina , Nucleossomos , Microscopia , Genoma , Núcleo Celular
9.
DNA Repair (Amst) ; 129: 103550, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37542751

RESUMO

OGG1 is the DNA glycosylase responsible for the removal of the oxidative lesion 8-oxoguanine (8-oxoG) from DNA. The recognition of this lesion by OGG1 is a complex process that involves scanning the DNA for the presence of 8-oxoG, followed by recognition and lesion removal. Structural data have shown that OGG1 evolves through different stages of conformation onto the DNA, corresponding to elementary steps of the 8-oxoG recognition and extrusion from the double helix. Single-molecule studies of OGG1 on naked DNA have shown that OGG1 slides in persistent contact with the DNA, displaying different binding states probably corresponding to the different conformation stages. However, in cells, the DNA is not naked and OGG1 has to navigate into a complex and highly crowded environment within the nucleus. To ensure rapid detection of 8-oxoG, OGG1 alternates between 3D diffusion and sliding along the DNA. This process is regulated by the local chromatin state but also by protein co-factors that could facilitate the detection of oxidized lesions. We will review here the different methods that have been used over the last years to better understand how OGG1 detects and process 8-oxoG lesions.


Assuntos
DNA Glicosilases , DNA Glicosilases/metabolismo , Reparo do DNA , Guanina/metabolismo , DNA/metabolismo
10.
Nat Struct Mol Biol ; 30(5): 678-691, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37106138

RESUMO

Poly(ADP-ribose) polymerase 1 (PARP1) activity is regulated by its co-factor histone poly(ADP-ribosylation) factor 1 (HPF1). The complex formed by HPF1 and PARP1 catalyzes ADP-ribosylation of serine residues of proteins near DNA breaks, mainly PARP1 and histones. However, the effect of HPF1 on DNA repair regulated by PARP1 remains unclear. Here, we show that HPF1 controls prolonged histone ADP-ribosylation in the vicinity of the DNA breaks by regulating both the number and length of ADP-ribose chains. Furthermore, we demonstrate that HPF1-dependent histone ADP-ribosylation triggers the rapid unfolding of chromatin, facilitating access to DNA at sites of damage. This process promotes the assembly of both the homologous recombination and non-homologous end joining repair machineries. Altogether, our data highlight the key roles played by the PARP1/HPF1 complex in regulating ADP-ribosylation signaling as well as the conformation of damaged chromatin at early stages of the DNA damage response.


Assuntos
Cromatina , Histonas , Histonas/metabolismo , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerase-1/genética , ADP-Ribosilação , Dano ao DNA , Reparo do DNA , DNA/metabolismo
11.
Mol Cell ; 83(10): 1743-1760.e11, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37116497

RESUMO

PARP1, an established anti-cancer target that regulates many cellular pathways, including DNA repair signaling, has been intensely studied for decades as a poly(ADP-ribosyl)transferase. Although recent studies have revealed the prevalence of mono-ADP-ribosylation upon DNA damage, it was unknown whether this signal plays an active role in the cell or is just a byproduct of poly-ADP-ribosylation. By engineering SpyTag-based modular antibodies for sensitive and flexible detection of mono-ADP-ribosylation, including fluorescence-based sensors for live-cell imaging, we demonstrate that serine mono-ADP-ribosylation constitutes a second wave of PARP1 signaling shaped by the cellular HPF1/PARP1 ratio. Multilevel chromatin proteomics reveals histone mono-ADP-ribosylation readers, including RNF114, a ubiquitin ligase recruited to DNA lesions through a zinc-finger domain, modulating the DNA damage response and telomere maintenance. Our work provides a technological framework for illuminating ADP-ribosylation in a wide range of applications and biological contexts and establishes mono-ADP-ribosylation by HPF1/PARP1 as an important information carrier for cell signaling.


Assuntos
ADP-Ribosilação , Histonas , Histonas/genética , Histonas/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Cromatina , Dano ao DNA , Anticorpos/genética , Transdução de Sinais
12.
Nucleic Acids Res ; 51(10): 4942-4958, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37021552

RESUMO

The DNA-glycosylase OGG1 oversees the detection and clearance of the 7,8-dihydro-8-oxoguanine (8-oxoG), which is the most frequent form of oxidized base in the genome. This lesion is deeply buried within the double-helix and its detection requires careful inspection of the bases by OGG1 via a mechanism that remains only partially understood. By analyzing OGG1 dynamics in the nucleus of living human cells, we demonstrate that the glycosylase constantly samples the DNA by rapidly alternating between diffusion within the nucleoplasm and short transits on the DNA. This sampling process, that we find to be tightly regulated by the conserved residue G245, is crucial for the rapid recruitment of OGG1 at oxidative lesions induced by laser micro-irradiation. Furthermore, we show that residues Y203, N149 and N150, while being all involved in early stages of 8-oxoG probing by OGG1 based on previous structural data, differentially regulate the sampling of the DNA and recruitment to oxidative lesions.


Assuntos
DNA Glicosilases , Humanos , Núcleo Celular/genética , Núcleo Celular/metabolismo , DNA/química , DNA Glicosilases/metabolismo , Reparo do DNA
13.
Front Cell Dev Biol ; 11: 1124960, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819096

RESUMO

One of the most abundant DNA lesions induced by Reactive oxygen species (ROS) is 8-oxoG, a highly mutagenic lesion that compromises genetic instability when not efficiently repaired. 8-oxoG is specifically recognized by the DNA-glycosylase OGG1 that excises the base and initiates the Base Excision Repair pathway (BER). Furthermore, OGG1 has not only a major role in DNA repair but it is also involved in transcriptional regulation. Cancer cells are particularly exposed to ROS, thus challenging their capacity to process oxidative DNA damage has been proposed as a promising therapeutic strategy for cancer treatment. Two competitive inhibitors of OGG1 (OGG1i) have been identified, TH5487 and SU0268, which bind to the OGG1 catalytic pocket preventing its fixation to the DNA. Early studies with these inhibitors show an enhanced cellular sensitivity to cytotoxic drugs and a reduction in the inflammatory response. Our study uncovers two unreported off-targets effects of these OGG1i that are independent of OGG1. In vitro and in cellulo approaches have unveiled that OGG1i TH5487 and SU0268, despite an unrelated molecular structure, are able to inhibit some members of the ABC family transporters, in particular ABC B1 (MDR1) and ABC G2 (BCRP). The inhibition of these efflux pumps by OGG1 inhibitors results in a higher intra-cellular accumulation of various fluorescent probes and drugs, and largely contributes to the enhanced cytotoxicity observed when the inhibitors are combined with cytotoxic agents. Furthermore, we found that SU0268 has an OGG1-independent anti-mitotic activity-by interfering with metaphase completion-resulting in a high cellular toxicity. These two off-target activities are observed at concentrations of OGG1i that are normally used for in vivo studies. It is thus critical to consider these previously unreported non-specific effects when interpreting studies using TH5487 and SU0268 in the context of OGG1 inhibition. Additionally, our work highlights the persistent need for new specific inhibitors of the enzymatic activity of OGG1.

14.
Metabolites ; 13(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36676996

RESUMO

Alternaria leaf blight, caused by the fungus Alternaria dauci, is the most damaging foliar disease of carrot. Some carrot genotypes exhibit partial resistance to this pathogen and resistance Quantitative Trait Loci (rQTL) have been identified. Co-localization of metabolic QTL and rQTL identified camphene, α-pinene, α-bisabolene, ß-cubebene, caryophyllene, germacrene D and α-humulene as terpenes potentially involved in carrot resistance against ALB. By combining genomic and transcriptomic analyses, we identified, under the co-localization regions, terpene-related genes which are differentially expressed between a resistant and a susceptible carrot genotype. These genes include five terpene synthases and twenty transcription factors. In addition, significant mycelial growth inhibition was observed in the presence of α-humulene and caryophyllene.

15.
Chromosoma ; 131(1-2): 47-58, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35235010

RESUMO

TET (ten-eleven translocation) enzymes initiate active cytosine demethylation via the oxidation of 5-methylcytosine. TET1 is composed of a C-terminal domain, which bears the catalytic activity of the enzyme, and a N-terminal region that is less well characterized except for the CXXC domain responsible for the targeting to CpG islands. While cytosine demethylation induced by TET1 promotes transcription, this protein also interacts with chromatin-regulating factors that rather silence this process, the coordination between these two opposite functions of TET1 being unclear. In the present work, we uncover a new function of the N-terminal part of the TET1 protein in the regulation of the chromatin architecture. This domain of the protein promotes the establishment of a compact chromatin architecture displaying reduced exchange rate of core histones and partial dissociation of the histone linker. This chromatin reorganization process, which does not rely on the CXXC domain, is associated with a global shutdown of transcription and an increase in heterochromatin-associated histone epigenetic marks. Based on these findings, we propose that the dense chromatin organization generated by the N-terminal domain of TET1 could contribute to restraining the transcription enhancement induced by the DNA demethylation activity of this enzyme.


Assuntos
Cromatina , Metilação de DNA , 5-Metilcitosina/metabolismo , Cromatina/genética , Citosina/metabolismo , Histonas/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
16.
Nat Commun ; 12(1): 6560, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772923

RESUMO

DNA double-strand breaks (DSBs) are among the most deleterious types of DNA damage as they can lead to mutations and chromosomal rearrangements, which underlie cancer development. Classical non-homologous end-joining (cNHEJ) is the dominant pathway for DSB repair in human cells, involving the DNA-binding proteins XRCC6 (Ku70) and XRCC5 (Ku80). Other DNA-binding proteins such as Zinc Finger (ZnF) domain-containing proteins have also been implicated in DNA repair, but their role in cNHEJ remained elusive. Here we show that ZNF384, a member of the C2H2 family of ZnF proteins, binds DNA ends in vitro and is recruited to DSBs in vivo. ZNF384 recruitment requires the poly(ADP-ribosyl) polymerase 1 (PARP1)-dependent expansion of damaged chromatin, followed by binding of its C2H2 motifs to the exposed DNA. Moreover, ZNF384 interacts with Ku70/Ku80 via its N-terminus, thereby promoting Ku70/Ku80 assembly and the accrual of downstream cNHEJ factors, including APLF and XRCC4/LIG4, for efficient repair at DSBs. Altogether, our data suggest that ZNF384 acts as a 'Ku-adaptor' that binds damaged DNA and Ku70/Ku80 to facilitate the build-up of a cNHEJ repairosome, highlighting a role for ZNF384 in DSB repair and genome maintenance.


Assuntos
Quebras de DNA de Cadeia Dupla , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , DNA/metabolismo , Humanos , Transativadores/genética , Fatores de Transcrição/genética
17.
Front Cell Dev Biol ; 9: 730998, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34589495

RESUMO

DNA repair requires a coordinated effort from an array of factors that play different roles in the DNA damage response from recognizing and signaling the presence of a break, creating a repair competent environment, and physically repairing the lesion. Due to the rapid nature of many of these events, live-cell microscopy has become an invaluable method to study this process. In this review we outline commonly used tools to induce DNA damage under the microscope and discuss spatio-temporal analysis tools that can bring added information regarding protein dynamics at sites of damage. In particular, we show how to go beyond the classical analysis of protein recruitment curves to be able to assess the dynamic association of the repair factors with the DNA lesions as well as the target-search strategies used to efficiently find these lesions. Finally, we discuss how the use of mathematical models, combined with experimental evidence, can be used to better interpret the complex dynamics of repair proteins at DNA lesions.

18.
Biomed Opt Express ; 12(8): 5290-5304, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34513257

RESUMO

We report how a recently developed polarization imaging technique, implementing micro-wave photonics and referred to as orthogonality-breaking (OB) imaging, can be adapted on a classical confocal fluorescence microscope, and is able to provide informative polarization images from a single scan of the cell sample. For instance, the comparison of the images of various cell lines at different cell-cycle stages obtained by OB polarization microscopy and fluorescence confocal images shows that an endogenous polarimetric contrast arizes with this instrument on compacted chromosomes during cell division.

19.
PLoS Biol ; 19(9): e3001376, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34491981

RESUMO

Mammalian oocyte meiotic divisions are highly asymmetric and produce a large haploid gamete and 2 small polar bodies. This relies on the ability of the cell to break symmetry and position its spindle close to the cortex before anaphase occurs. In metaphase II-arrested mouse oocytes, the spindle is actively maintained close and parallel to the cortex, until fertilization triggers sister chromatid segregation and the rotation of the spindle. The latter must indeed reorient perpendicular to the cortex to enable cytokinesis ring closure at the base of the polar body. However, the mechanisms underlying symmetry breaking and spindle rotation have remained elusive. In this study, we show that spindle rotation results from 2 antagonistic forces. First, an inward contraction of the cytokinesis furrow dependent on RhoA signaling, and second, an outward attraction exerted on both sets of chromatids by a Ran/Cdc42-dependent polarization of the actomyosin cortex. By combining live segmentation and tracking with numerical modeling, we demonstrate that this configuration becomes unstable as the ingression progresses. This leads to spontaneous symmetry breaking, which implies that neither the rotation direction nor the set of chromatids that eventually gets discarded are biologically predetermined.


Assuntos
Segregação de Cromossomos , Meiose , Oócitos/citologia , Fuso Acromático , Actinas/metabolismo , Animais , Feminino , Camundongos , Proteína cdc42 de Ligação ao GTP , Proteína rhoA de Ligação ao GTP
20.
Nat Commun ; 12(1): 4055, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210965

RESUMO

Poly(ADP-ribose) polymerase 1 (PARP1) and PARP2 are recruited and activated by DNA damage, resulting in ADP-ribosylation at numerous sites, both within PARP1 itself and in other proteins. Several PARP1 and PARP2 inhibitors are currently employed in the clinic or undergoing trials for treatment of various cancers. These drugs act primarily by trapping PARP1 on damaged chromatin, which can lead to cell death, especially in cells with DNA repair defects. Although PARP1 trapping is thought to be caused primarily by the catalytic inhibition of PARP-dependent modification, implying that ADP-ribosylation (ADPr) can counteract trapping, it is not known which exact sites are important for this process. Following recent findings that PARP1- or PARP2-mediated modification is predominantly serine-linked, we demonstrate here that serine ADPr plays a vital role in cellular responses to PARP1/PARP2 inhibitors. Specifically, we identify three serine residues within PARP1 (499, 507, and 519) as key sites whose efficient HPF1-dependent modification counters PARP1 trapping and contributes to inhibitor tolerance. Our data implicate genes that encode serine-specific ADPr regulators, HPF1 and ARH3, as potential PARP1/PARP2 inhibitor therapy biomarkers.


Assuntos
Proteínas de Transporte/metabolismo , Dano ao DNA , Reparo do DNA , Neoplasias/tratamento farmacológico , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Serina/metabolismo , ADP-Ribosilação , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Neoplasias/enzimologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/metabolismo , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA