Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Res Sq ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38947076

RESUMO

Background: The demand for genetic services has outpaced the availability of resources, challenging clinicians untrained in genetic integration into clinical decision-making. The UTHealth Adult Cardiovascular Genomics Certificate (CGC) program trains non-genetic healthcare professionals to recognize, assess, and refer patients with heritable cardiovascular diseases. This asynchronous online course includes 24 modules in three tiers of increasing complexity, using realistic clinical scenarios, interactive dialogues, quizzes, and tests to reinforce learning. We hypothesized that the CGC will increase genomic competencies in this underserved audience and encourage applying genomic concepts in clinical practice. Methods: Required course evaluations include pre- and post-assessments, knowledge checks in each module, and surveys for module-specific feedback. After 6 months, longitudinal feedback surveys gathered data on the long-term impact of the course on clinical practice and conducted focused interviews with learners. Results: The CGC was accredited in September 2022. Principal learners were nurses (24%), nurse practitioners (21%), physicians (16%), and physician assistants. Scores of 283 learners in paired pre- and post-assessments increased specific skills related to recognizing heritable diseases, understanding inheritance patterns, and interpreting genetic tests. Interviews highlighted the CGC's modular structure and linked resources as key strengths. Learners endorsed confidence to use genetic information in clinical practice, such as discussing genetic concepts and risks with patients and referring patients for genetic testing. Learners were highly likely to recommend the CGC to colleagues, citing its role in enhancing heritable disease awareness. Conclusions: The CGC program effectively empowers non-genetic clinicians to master genomic competencies, fostering collaboration to prevent deaths from heritable cardiovascular diseases, and potentially transforming healthcare education and clinical practice.

2.
Differentiation ; 138: 100791, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38941819

RESUMO

A Wt1 conditional deletion, nuclear red fluorescent protein (RFP) reporter allele was generated in the mouse by gene targeting in embryonic stem cells. Upon Cre-mediated recombination, a deletion allele is generated that expresses RFP in a Wt1-specific pattern. RFP expression was detected in embryonic and adult tissues known to express Wt1, including the kidney, mesonephros, and testis. In addition, RFP expression and WT1 co-localization was detected in the adult uterine stroma and myometrium, suggesting a role in uterine function. Crosses with Wnt7a-Cre transgenic mice that express Cre in the Müllerian duct epithelium activate Wt1-directed RFP expression in the epithelium of the oviduct but not the stroma and myometrium of the uterus. This new mouse strain should be a useful resource for studies of Wt1 function and marking Wt1-expressing cells.


Assuntos
Alelos , Proteínas Luminescentes , Camundongos Transgênicos , Proteína Vermelha Fluorescente , Proteínas WT1 , Animais , Camundongos , Proteínas WT1/genética , Proteínas WT1/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Feminino , Genes Reporter , Masculino , Deleção de Genes
3.
Nat Rev Urol ; 21(3): 158-180, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37848532

RESUMO

The modern study of Wilms tumour was prompted nearly 50 years ago, when Alfred Knudson proposed the 'two-hit' model of tumour development. Since then, the efforts of researchers worldwide have substantially expanded our knowledge of Wilms tumour biology, including major advances in genetics - from cloning the first Wilms tumour gene to high-throughput studies that have revealed the genetic landscape of this tumour. These discoveries improve understanding of the embryonal origin of Wilms tumour, familial occurrences and associated syndromic conditions. Many efforts have been made to find and clinically apply prognostic biomarkers to Wilms tumour, for which outcomes are generally favourable, but treatment of some affected individuals remains challenging. Challenges are also posed by the intratumoural heterogeneity of biomarkers. Furthermore, preclinical models of Wilms tumour, from cell lines to organoid cultures, have evolved. Despite these many achievements, much still remains to be discovered: further molecular understanding of relapse in Wilms tumour and of the multiple origins of bilateral Wilms tumour are two examples of areas under active investigation. International collaboration, especially when large tumour series are required to obtain robust data, will help to answer some of the remaining unresolved questions.


Assuntos
Neoplasias Renais , Tumor de Wilms , Humanos , Neoplasias Renais/terapia , Recidiva Local de Neoplasia , Tumor de Wilms/terapia , Biomarcadores , Biologia
4.
Nat Commun ; 14(1): 8006, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110397

RESUMO

Developing synchronous bilateral Wilms tumor suggests an underlying (epi)genetic predisposition. Here, we evaluate this predisposition in 68 patients using whole exome or genome sequencing (n = 85 tumors from 61 patients with matched germline blood DNA), RNA-seq (n = 99 tumors), and DNA methylation analysis (n = 61 peripheral blood, n = 29 non-diseased kidney, n = 99 tumors). We determine the predominant events for bilateral Wilms tumor predisposition: 1)pre-zygotic germline genetic variants readily detectable in blood DNA [WT1 (14.8%), NYNRIN (6.6%), TRIM28 (5%), and BRCA-related genes (5%)] or 2)post-zygotic epigenetic hypermethylation at 11p15.5 H19/ICR1 that may require analysis of multiple tissue types for diagnosis. Of 99 total tumor specimens, 16 (16.1%) have 11p15.5 normal retention of imprinting, 25 (25.2%) have 11p15.5 copy neutral loss of heterozygosity, and 58 (58.6%) have 11p15.5 H19/ICR1 epigenetic hypermethylation (loss of imprinting). Here, we ascertain the epigenetic and genetic modes of bilateral Wilms tumor predisposition.


Assuntos
Neoplasias Renais , Tumor de Wilms , Criança , Humanos , Tumor de Wilms/genética , Tumor de Wilms/patologia , Genótipo , Metilação de DNA/genética , DNA , Neoplasias Renais/genética , Neoplasias Renais/patologia , Epigênese Genética , Impressão Genômica
5.
Res Sq ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36993649

RESUMO

This study comprehensively evaluated the landscape of genetic and epigenetic events that predispose to synchronous bilateral Wilms tumor (BWT). We performed whole exome or whole genome sequencing, total-strand RNA-seq, and DNA methylation analysis using germline and/or tumor samples from 68 patients with BWT from St. Jude Children's Research Hospital and the Children's Oncology Group. We found that 25/61 (41%) of patients evaluated harbored pathogenic or likely pathogenic germline variants, with WT1 (14.8%), NYNRIN (6.6%), TRIM28 (5%) and the BRCA-related genes (5%) BRCA1, BRCA2, and PALB2 being most common. Germline WT1 variants were strongly associated with somatic paternal uniparental disomy encompassing the 11p15.5 and 11p13/WT1 loci and subsequent acquired pathogenic CTNNB1 variants. Somatic coding variants or genome-wide copy number alterations were almost never shared between paired synchronous BWT, suggesting that the acquisition of independent somatic variants leads to tumor formation in the context of germline or early embryonic, post-zygotic initiating events. In contrast, 11p15.5 status (loss of heterozygosity, loss or retention of imprinting) was shared among paired synchronous BWT in all but one case. The predominant molecular events for BWT predisposition include pathogenic germline variants or post-zygotic epigenetic hypermethylation at the 11p15.5 H19/ICR1 locus (loss of imprinting). This study demonstrates that post-zygotic somatic mosaicism for 11p15.5 hypermethylation/loss of imprinting is the single most common initiating molecular event predisposing to BWT. Evidence of somatic mosaicism for 11p15.5 loss of imprinting was detected in leukocytes of a cohort of BWT patients and long-term survivors, but not in unilateral Wilms tumor patients and long-term survivors or controls, further supporting the hypothesis that post-zygotic 11p15.5 alterations occurred in the mesoderm of patients who go on to develop BWT. Due to the preponderance of BWT patients with demonstrable germline or early embryonic tumor predisposition, BWT exhibits a unique biology when compared to unilateral Wilms tumor and therefore warrants continued refinement of its own treatment-relevant biomarkers which in turn may inform directed treatment strategies in the future.

6.
Cell Rep Med ; 3(6): 100644, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35617957

RESUMO

Over the last decade, sequencing of primary tumors has clarified the genetic underpinnings of Wilms tumor but has not affected therapy, outcome, or toxicity. We now sharpen our focus on relapse samples from the umbrella AREN03B2 study. We show that over 40% of relapse samples contain mutations in SIX1 or genes of the MYCN network, drivers of progenitor proliferation. Not previously seen in large studies of primary Wilms tumors, DIS3 and TERT are now identified as recurrently mutated. The analysis of primary-relapse tumor pairs suggests that 11p15 loss of heterozygosity (and other copy number changes) and mutations in WT1 and MLLT1 typically occur early, but mutations in SIX1, MYCN, and WTX are late developments in some individuals. Most strikingly, 75% of relapse samples had gain of 1q, providing strong conceptual support for studying circulating tumor DNA in clinical trials to better detect 1q gain earlier and monitor response.


Assuntos
Neoplasias Renais , Tumor de Wilms , Criança , Genes do Tumor de Wilms , Proteínas de Homeodomínio/genética , Humanos , Neoplasias Renais/genética , Proteína Proto-Oncogênica N-Myc/genética , Recidiva Local de Neoplasia/genética , Tumor de Wilms/genética
7.
Nat Commun ; 10(1): 3756, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434897

RESUMO

Under physiological conditions, strength and persistence of memory must be regulated in order to produce behavioral flexibility. In fact, impairments in memory flexibility are associated with pathologies such as post-traumatic stress disorder or autism; however, the underlying mechanisms that enable memory flexibility are still poorly understood. Here, we identify transcriptional repressor Wilm's Tumor 1 (WT1) as a critical synaptic plasticity regulator that decreases memory strength, promoting memory flexibility. WT1 is activated in the hippocampus following induction of long-term potentiation (LTP) or learning. WT1 knockdown enhances CA1 neuronal excitability, LTP and long-term memory whereas its overexpression weakens memory retention. Moreover, forebrain WT1-deficient mice show deficits in both reversal, sequential learning tasks and contextual fear extinction, exhibiting impaired memory flexibility. We conclude that WT1 limits memory strength or promotes memory weakening, thus enabling memory flexibility, a process that is critical for learning from new experiences.


Assuntos
Hipocampo/fisiologia , Memória/fisiologia , Proteínas Repressoras/metabolismo , Animais , Comportamento Animal/fisiologia , Região CA1 Hipocampal/metabolismo , Medo/fisiologia , Potenciação de Longa Duração/fisiologia , Masculino , Transtornos da Memória/patologia , Camundongos , Camundongos Knockout , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Proteínas Repressoras/genética , Proteínas WT1
8.
PLoS One ; 13(12): e0208936, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30543698

RESUMO

This study explores the genomic alterations that contribute to the formation of a unique subset of low-risk, epithelial differentiated, favorable histology Wilms tumors (WT), tumors that have been characterized by their expression of post-induction renal developmental genes (Subset 1 WT). We demonstrate copy neutral loss of heterozygosity involving 19q13.32-q13.43, unaccompanied by evidence for imprinting by DNA methylation. We further identified loss-of-function somatic mutations in TRIM28 (also known as KAP1), located at 19q13, in 8/9 Subset 1 tumors analyzed. An additional germline TRIM28 mutation was identified in one patient. Retrospective evaluation of previously analyzed WT outside of Subset 1 identified an additional tumor with anaplasia and both TRIM28 and TP53 mutations. A major function of TRIM28 is the repression of endogenous retroviruses early in development. We depleted TRIM28 in HEK293 cells, which resulted in increased expression of endogenous retroviruses, a finding also demonstrated in TRIM28-mutant WT. TRIM28 has been shown by others to be active during early renal development, and to interact with WTX, another gene recurrently mutated in WT. Our findings suggest that inactivation of TRIM28 early in renal development contributes to the formation of this unique subset of FHWTs, although the precise manner in which TRIM28 impacts both normal renal development and oncogenesis remains elusive.


Assuntos
Carcinogênese/genética , Neoplasias Renais/genética , Proteína 28 com Motivo Tripartido/genética , Tumor de Wilms/genética , Anaplasia/genética , Anaplasia/patologia , Metilação de DNA/genética , Feminino , Mutação em Linhagem Germinativa/genética , Células HEK293 , Humanos , Lactente , Recém-Nascido , Rim/crescimento & desenvolvimento , Rim/metabolismo , Rim/patologia , Neoplasias Renais/patologia , Mutação com Perda de Função/genética , Masculino , Fatores de Risco , Tumor de Wilms/patologia
9.
Oncotarget ; 9(82): 35313-35326, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30450160

RESUMO

Wilms tumor 1 (WT1) is a zinc finger transcriptional regulator, and has been implicated as both a tumor suppressor and oncogene in various malignancies. Mutations in the DNA-binding domain of the WT1 gene are described in 10-15% of normal-karyotype AML (NK-AML) in pediatric and adult patients. Similar WT1 mutations have been reported in adult patients with myelodysplastic syndrome (MDS). WT1 mutations have been independently associated with treatment failure and poor prognosis in NK-AML. Internal tandem duplication (ITD) mutations of FMS-like tyrosine kinase 3 (FLT3) commonly co-occur with WT1-mutant AML, suggesting a cooperative role in leukemogenesis. The functional role of WT1 mutations in hematologic malignancies appears to be complex and is not yet fully elucidated. Here, we describe the hematologic phenotype of a knock-in mouse model of a Wt1 mutation (R394W), described in cases of human leukemia. We show that Wt1 +/R394W mice develop MDS which becomes 100% penetrant in a transplant model, exhibit an aberrant expansion of myeloid progenitor cells, and demonstrate enhanced self-renewal of hematopoietic progenitor cells in vitro. We crossbred Wt1 +/R394W mice with knock-in Flt3 +/ITD mice, and show that mice with both mutations (Flt3 +/ITD/Wt1 +/R394W) develop a transplantable MDS/MPN, with more aggressive features compared to either single mutant mouse model.

10.
Nat Genet ; 49(10): 1487-1494, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28825729

RESUMO

We performed genome-wide sequencing and analyzed mRNA and miRNA expression, DNA copy number, and DNA methylation in 117 Wilms tumors, followed by targeted sequencing of 651 Wilms tumors. In addition to genes previously implicated in Wilms tumors (WT1, CTNNB1, AMER1, DROSHA, DGCR8, XPO5, DICER1, SIX1, SIX2, MLLT1, MYCN, and TP53), we identified mutations in genes not previously recognized as recurrently involved in Wilms tumors, the most frequent being BCOR, BCORL1, NONO, MAX, COL6A3, ASXL1, MAP3K4, and ARID1A. DNA copy number changes resulted in recurrent 1q gain, MYCN amplification, LIN28B gain, and MIRLET7A loss. Unexpected germline variants involved PALB2 and CHEK2. Integrated analyses support two major classes of genetic changes that preserve the progenitor state and/or interrupt normal development.


Assuntos
Genes Neoplásicos , Neoplasias Renais/genética , Tumor de Wilms/genética , Aneuploidia , Metilação de DNA , Epigênese Genética , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Estudo de Associação Genômica Ampla , Mutação em Linhagem Germinativa , Humanos , MicroRNAs/biossíntese , MicroRNAs/genética , Conformação Proteica , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética
11.
Development ; 144(1): 44-53, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27888191

RESUMO

Supporting cells (Sertoli and granulosa) and steroidogenic cells (Leydig and theca-interstitium) are two major somatic cell types in mammalian gonads, but the mechanisms that control their differentiation during gonad development remain elusive. In this study, we found that deletion of Wt1 in the ovary after sex determination caused ectopic development of steroidogenic cells at the embryonic stage. Furthermore, differentiation of both Sertoli and granulosa cells was blocked when Wt1 was deleted before sex determination and most genital ridge somatic cells differentiated into steroidogenic cells in both male and female gonads. Further studies revealed that WT1 repressed Sf1 expression by directly binding to the Sf1 promoter region, and the repressive function was completely abolished when WT1 binding sites were mutated. This study demonstrates that Wt1 is required for the lineage specification of both Sertoli and granulosa cells by repressing Sf1 expression. Without Wt1, the expression of Sf1 was upregulated and the somatic cells differentiated into steroidogenic cells instead of supporting cells. Our study uncovers a novel mechanism of somatic cell differentiation during gonad development.


Assuntos
Linhagem da Célula/genética , Células da Granulosa/fisiologia , Fatores de Processamento de RNA/genética , Proteínas Repressoras/fisiologia , Células de Sertoli/fisiologia , Diferenciação Sexual/genética , Animais , Diferenciação Celular/genética , Células Cultivadas , Regulação para Baixo/genética , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Células da Granulosa/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Gravidez , Células de Sertoli/metabolismo , Processos de Determinação Sexual/genética , Proteínas WT1
12.
Clin Cancer Res ; 22(22): 5582-5591, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27702824

RESUMO

PURPOSE: To investigate the role and significance of TP53 mutation in diffusely anaplastic Wilms tumors (DAWTs). EXPERIMENTAL DESIGN: All DAWTs registered on National Wilms Tumor Study-5 (n = 118) with available samples were analyzed for TP53 mutations and copy loss. Integrative genomic analysis was performed on 39 selected DAWTs. RESULTS: Following analysis of a single random sample, 57 DAWTs (48%) demonstrated TP53 mutations, 13 (11%) copy loss without mutation, and 48 (41%) lacked both [defined as TP53-wild-type (wt)]. Patients with stage III/IV TP53-wt DAWTs (but not those with stage I/II disease) had significantly lower relapse and death rates than those with TP53 abnormalities. In-depth analysis of a subset of 39 DAWTs showed seven (18%) to be TP53-wt: These demonstrated gene expression evidence of an active p53 pathway. Retrospective pathology review of TP53-wt DAWT revealed no or very low volume of anaplasia in six of seven tumors. When samples from TP53-wt tumors known to contain anaplasia histologically were available, abnormal p53 protein accumulation was observed by immunohistochemistry. CONCLUSIONS: These data support the key role of TP53 loss in the development of anaplasia in WT, and support its significant clinical impact in patients with residual anaplastic tumor following surgery. These data also suggest that most DAWTs will show evidence of TP53 mutation when samples selected for the presence of anaplasia are analyzed. This suggests that modifications of the current criteria to also consider volume of anaplasia and documentation of TP53 aberrations may better reflect the risk of relapse and death and enable optimization of therapeutic stratification. Clin Cancer Res; 22(22); 5582-91. ©2016 AACR.


Assuntos
Anaplasia/genética , Neoplasias Renais/genética , Mutação/genética , Rádio (Anatomia)/anormalidades , Proteína Supressora de Tumor p53/genética , Tumor de Wilms/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Expressão Gênica/genética , Humanos , Imuno-Histoquímica/métodos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
13.
Neoplasia ; 18(2): 71-81, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26936393

RESUMO

Wilms tumor, a common childhood tumor of the kidney, is thought to arise from undifferentiated renal mesenchyme. Variable tumor histology and the identification of tumor subsets displaying different gene expression profiles suggest that tumors may arise at different stages of mesenchyme differentiation and that this ontogenic variability impacts tumor pathology, biology, and clinical outcome. To test the tumorigenic potential of different cell types in the developing kidney, we used kidney progenitor-specific Cre recombinase alleles to introduce Wt1 and Ctnnb1 mutations, two alterations observed in Wilms tumor, into embryonic mouse kidney, with and without biallelic Igf2 expression, another alteration that is observed in a majority of tumors. Use of a Cre allele that targets nephron progenitors to introduce a Ctnnb1 mutation that stabilizes ß-catenin resulted in the development of tumors with a predominant epithelial histology and a gene expression profile in which genes characteristic of early renal mesenchyme were not expressed. Nephron progenitors with Wt1 ablation and Igf2 biallelic expression were also tumorigenic but displayed a more triphasic histology and expressed early metanephric mesenchyme genes. In contrast, the targeting of these genetic alterations to stromal progenitors did not result in tumors. These data demonstrate that committed nephron progenitors can give rise to Wilms tumors and that committed stromal progenitors are less tumorigenic, suggesting that human Wilms tumors that display a predominantly stromal histology arise from mesenchyme before commitment to a stromal lineage.


Assuntos
Fator de Crescimento Insulin-Like II/genética , Neoplasias Renais/genética , Proteínas Repressoras/genética , Tumor de Wilms/genética , beta Catenina/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Integrases/genética , Neoplasias Renais/patologia , Camundongos , Mutação , Néfrons/metabolismo , Néfrons/patologia , Células Estromais/metabolismo , Ativação Transcricional/genética , Proteínas WT1 , Tumor de Wilms/patologia
14.
J Med Genet ; 53(6): 385-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26566882

RESUMO

Wilms tumour (WT), a paediatric renal cancer, is the most common childhood kidney cancer. The aetiology of WT is heterogeneous with multiple genes known to result in WT tumorigenesis. However, these genes are rarely associated with familial Wilms tumour (FWT). To identify mutations predisposing to FWT, we performed whole-genome sequencing using genomic DNA from three affected/obligate carriers in a large WT family, followed by Sanger sequencing of candidate gene mutations in 47 additional WT families to determine their frequency in FWT. As a result, we identified two novel germline DICER1 mutations (G803R and R800Xfs5) co-segregating in two families, thus expanding the number of reported WT families with unique germline DICER1 mutations. The one large family was found to include individuals with multiple DICER1 syndrome phenotypes, including four WT cases. Interestingly, carriers of the DICER1 mutation displayed a greatly increased frequency of WT development compared with the penetrance observed in previously published pedigrees. Also uniquely, in one tumour this DICER1 mutant allele (G803R) was reduced to homozygosity in contrast to the somatic hotspot mutations typically observed in tumours in DICER1 families.


Assuntos
RNA Helicases DEAD-box/genética , Mutação em Linhagem Germinativa/genética , Perda de Heterozigosidade/genética , Ribonuclease III/genética , Tumor de Wilms/genética , Adolescente , Adulto , Pré-Escolar , Feminino , Predisposição Genética para Doença/genética , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem
15.
Nat Commun ; 6: 10013, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26635203

RESUMO

Wilms tumour is an embryonal tumour of childhood that closely resembles the developing kidney. Genomic changes responsible for the development of the majority of Wilms tumours remain largely unknown. Here we identify recurrent mutations within Wilms tumours that involve the highly conserved YEATS domain of MLLT1 (ENL), a gene known to be involved in transcriptional elongation during early development. The mutant MLLT1 protein shows altered binding to acetylated histone tails. Moreover, MLLT1-mutant tumours show an increase in MYC gene expression and HOX dysregulation. Patients with MLLT1-mutant tumours present at a younger age and have a high prevalence of precursor intralobar nephrogenic rests. These data support a model whereby activating MLLT1 mutations early in renal development result in the development of Wilms tumour.


Assuntos
Neoplasias Renais/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Tumor de Wilms/genética , Estudos de Coortes , Histonas/genética , Histonas/metabolismo , Humanos , Rim/metabolismo , Neoplasias Renais/metabolismo , Mutação , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Tumor de Wilms/metabolismo
16.
Proc Natl Acad Sci U S A ; 112(13): 4003-8, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25775596

RESUMO

Sertoli and Leydig cells, the two major somatic cell types in the testis, have different morphologies and functions. Both are essential for gonad development and spermatogenesis. However, whether these cells are derived from the same progenitor cells and the mechanism regulating the differentiation between these two cell types during gonad development remains unclear. A previous study showed that overactivation of Ctnnb1 (cadherin-associated protein, beta 1) in Sertoli cells resulted in Sertoli cell tumors. Surprisingly, in the present study, we found that simultaneous deletion of Wilms' Tumor Gene 1 (Wt1) and overactivation of Ctnnb1 in Sertoli cells led to Leydig cell-like tumor development. Lineage tracing experiments revealed that the Leydig-like tumor cells were derived from Sertoli cells. Further studies confirmed that Wt1 is required for the maintenance of the Sertoli cell lineage and that deletion of Wt1 resulted in the reprogramming of Sertoli cells to Leydig cells. Consistent with this interpretation, overexpression of Wt1 in Leydig cells led to the up-regulation of Sertoli cell-specific gene expression and the down-regulation of steroidogenic gene expression. These results demonstrate that the distinction between Sertoli cells and Leydig cells is regulated by Wt1, implying that these two cell types most likely originate from the same progenitor cells. This study thus provides a novel concept for somatic cell fate determination in testis development that may also represent an etiology of male infertility in human patients.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células Intersticiais do Testículo/citologia , Células de Sertoli/citologia , Testículo/crescimento & desenvolvimento , Proteínas WT1/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Deleção de Genes , Imuno-Histoquímica , Masculino , Camundongos Knockout , Testículo/embriologia , beta Catenina/genética
17.
Cancer Cell ; 27(2): 286-97, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25670082

RESUMO

We report the most common single-nucleotide substitution/deletion mutations in favorable histology Wilms tumors (FHWTs) to occur within SIX1/2 (7% of 534 tumors) and microRNA processing genes (miRNAPGs) DGCR8 and DROSHA (15% of 534 tumors). Comprehensive analysis of 77 FHWTs indicates that tumors with SIX1/2 and/or miRNAPG mutations show a pre-induction metanephric mesenchyme gene expression pattern and are significantly associated with both perilobar nephrogenic rests and 11p15 imprinting aberrations. Significantly decreased expression of mature Let-7a and the miR-200 family (responsible for mesenchymal-to-epithelial transition) in miRNAPG mutant tumors is associated with an undifferentiated blastemal histology. The combination of SIX and miRNAPG mutations in the same tumor is associated with evidence of RAS activation and a higher rate of relapse and death.


Assuntos
Proteínas de Homeodomínio/genética , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a RNA/genética , Ribonuclease III/genética , Tumor de Wilms/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Perda de Heterozigosidade/genética , MicroRNAs/genética , Mutação , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Polimorfismo de Nucleotídeo Único , Tumor de Wilms/patologia
18.
Stem Cell Reports ; 3(1): 24-33, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-25068119

RESUMO

An open question remains in cancer stem cell (CSC) biology whether CSCs are by definition at the top of the differentiation hierarchy of the tumor. Wilms' tumor (WT), composed of blastema and differentiated renal elements resembling the nephrogenic zone of the developing kidney, is a valuable model for studying this question because early kidney differentiation is well characterized. WT neural cell adhesion molecule 1-positive (NCAM1(+)) aldehyde dehydrogenase 1-positive (ALDH1(+)) CSCs have been recently isolated and shown to harbor early renal progenitor traits. Herein, by generating pure blastema WT xenografts, composed solely of cells expressing the renal developmental markers SIX2 and NCAM1, we surprisingly show that sorted ALDH1(+) WT CSCs do not correspond to earliest renal stem cells. Rather, gene expression and proteomic comparative analyses disclose a cell type skewed more toward epithelial differentiation than the bulk of the blastema. Thus, WT CSCs are likely to dedifferentiate to propagate WT blastema.


Assuntos
Células-Tronco Neoplásicas/patologia , Tumor de Wilms/metabolismo , Tumor de Wilms/patologia , Família Aldeído Desidrogenase 1 , Animais , Antígeno CD56/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Feminino , Humanos , Isoenzimas/metabolismo , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Camundongos , Camundongos SCID , Modelos Biológicos , Células-Tronco Neoplásicas/metabolismo , Retinal Desidrogenase/metabolismo
19.
Transl Oncol ; 7(4): 484-92, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24969538

RESUMO

The role of inflammation in cancer has been reported in various adult malignant neoplasms. By contrast, its role in pediatric tumors has not been as well studied. In this study, we have identified and characterized the infiltration of various inflammatory immune cells as well as inflammatory markers in Wilms tumor (WT), the most common renal malignancy in children. Formalin-fixed paraffin-embedded blocks from tumors and autologous normal kidneys were immunostained for inflammatory immune cells (T cells, B cells, macrophages, neutrophils, and mast cells) and inflammatory markers such as cyclooxygenase-2 (COX-2), hypoxia-inducible factor 1α, phosphorylated STAT3, phosphorylated extracellular signal-related kinases 1 and 2, inducible nitric oxide synthase, nitrotyrosine, and vascular endothelial growth factor expression. Overall, we found that there was predominant infiltration of tumor-associated macrophages in the tumor stroma where COX-2 was robustly expressed. The other tumor-associated inflammatory markers were also mostly localized to tumor stroma. Hence, we speculate that COX-2-mediated inflammatory microenvironment may be important in WT growth and potential therapies targeting this pathway may be beneficial and should be tested in clinical settings for the treatment of WTs in children.

20.
Cancer Res ; 74(16): 4515-25, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24848510

RESUMO

Hepatocellular carcinoma (HCC) was thought historically to arise from hepatocytes, but gene expression studies have suggested that it can also arise from fetal progenitor cells or their adult progenitor progeny. Here, we report the identification of a unique population of fetal liver progenitor cells in mice that can serve as a cell of origin in HCC development. In the transgenic model used, mice carry the Cited1-CreER(TM)-GFP BAC transgene in which a tamoxifen-inducible Cre (CreER(TM)) and GFP are controlled by a 190-kb 5' genomic region of Cited1, a transcriptional coactivator protein for CBP/p300. Wnt signaling is critical for regulating self-renewal of progenitor/stem cells and has been implicated in the etiology of cancers of rapidly self-renewing tissues, so we hypothesized that Wnt pathway activation in CreER(TM)-GFP(+) progenitors would result in HCC. In livers from the mouse model, transgene-expressing cells represented 4% of liver cells at E11.5 when other markers were expressed, characteristic of the hepatic stem/progenitor cells that give rise to adult hepatocytes, cholangiocytes, and SOX9(+) periductal cells. By 26 weeks of age, more than 90% of Cited1-CreER(TM)-GFP;Ctnnb1(ex3(fl)) mice with Wnt pathway activation developed HCC and, in some cases, hepatoblastomas and lung metastases. HCC and hepatoblastomas resembled their human counterparts histologically, showing activation of Wnt, Ras/Raf/MAPK, and PI3K/AKT/mTOR pathways and expressing relevant stem/progenitor cell markers. Our results show that Wnt pathway activation is sufficient for malignant transformation of these unique liver progenitor cells, offering functional support for a fetal/adult progenitor origin of some human HCC. We believe this model may offer a valuable new tool to improve understanding of the cellular etiology and biology of HCC and hepatoblastomas and the development of improved therapeutics for these diseases.


Assuntos
Neoplasias Hepáticas Experimentais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Wnt/metabolismo , Animais , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Camundongos Transgênicos , Células-Tronco Neoplásicas/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA