Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 223(11)2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39136939

RESUMO

Preserving the health of the mitochondrial network is critical to cell viability and longevity. To do so, mitochondria employ several membrane remodeling mechanisms, including the formation of mitochondrial-derived vesicles (MDVs) and compartments (MDCs) to selectively remove portions of the organelle. In contrast to well-characterized MDVs, the distinguishing features of MDC formation and composition remain unclear. Here, we used electron tomography to observe that MDCs form as large, multilamellar domains that generate concentric spherical compartments emerging from mitochondrial tubules at ER-mitochondria contact sites. Time-lapse fluorescence microscopy of MDC biogenesis revealed that mitochondrial membrane extensions repeatedly elongate, coalesce, and invaginate to form these compartments that encase multiple layers of membrane. As such, MDCs strongly sequester portions of the outer mitochondrial membrane, securing membrane cargo into a protected domain, while also enclosing cytosolic material within the MDC lumen. Collectively, our results provide a model for MDC formation and describe key features that distinguish MDCs from other previously identified mitochondrial structures and cargo-sorting domains.


Assuntos
Citosol , Mitocôndrias , Membranas Mitocondriais , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Citosol/metabolismo , Membranas Mitocondriais/metabolismo , Humanos , Tomografia com Microscopia Eletrônica , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Células HeLa , Animais
2.
J Cell Biol ; 223(11)2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39136938

RESUMO

The outer mitochondrial membrane (OMM) creates a boundary that imports most of the mitochondrial proteome while removing extraneous or damaged proteins. How the OMM senses aberrant proteins and remodels to maintain OMM integrity remains unresolved. Previously, we identified a mitochondrial remodeling mechanism called the mitochondrial-derived compartment (MDC) that removes a subset of the mitochondrial proteome. Here, we show that MDCs specifically sequester proteins localized only at the OMM, providing an explanation for how select mitochondrial proteins are incorporated into MDCs. Remarkably, selective sorting into MDCs also occurs within the OMM, as subunits of the translocase of the outer membrane (TOM) complex are excluded from MDCs unless assembly of the TOM complex is impaired. Considering that overloading the OMM with mitochondrial membrane proteins or mistargeted tail-anchored membrane proteins induces MDCs to form and sequester these proteins, we propose that one functional role of MDCs is to create an OMM-enriched trap that segregates and sequesters excess proteins from the mitochondrial surface.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Proteínas Mitocondriais , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Membranas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Transporte Proteico , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteoma/metabolismo
3.
bioRxiv ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39026767

RESUMO

Cells utilize numerous pathways to maintain mitochondrial homeostasis, including a recently identified mechanism that adjusts the content of the outer mitochondrial membrane (OMM) through formation of OMM-derived multilamellar domains called mitochondrial-derived compartments, or MDCs. MDCs are triggered by perturbations in mitochondrial lipid and protein content, as well as increases in intracellular amino acids. Here, we sought to understand how amino acids trigger MDCs. We show that amino acid-activation of MDCs is dependent on the functional state of mitochondria. While amino acid excess triggers MDC formation when cells are grown on fermentable carbon sources, stimulating mitochondrial biogenesis blocks MDC formation. Moreover, amino acid elevation depletes TCA cycle metabolites in yeast, and preventing consumption of TCA cycle intermediates for amino acid catabolism suppresses MDC formation. Finally, we show that directly impairing the TCA cycle is sufficient to trigger MDC formation in the absence of amino acid stress. These results demonstrate that amino acids stimulate MDC formation by perturbing mitochondrial metabolism.

4.
J Cell Biol ; 223(5)2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38497895

RESUMO

Cells utilize multiple mechanisms to maintain mitochondrial homeostasis. We recently characterized a pathway that remodels mitochondria in response to metabolic alterations and protein overload stress. This remodeling occurs via the formation of large membranous structures from the mitochondrial outer membrane called mitochondrial-derived compartments (MDCs), which are eventually released from mitochondria and degraded. Here, we conducted a microscopy-based screen in budding yeast to identify factors that regulate MDC formation. We found that two phospholipids, cardiolipin (CL) and phosphatidylethanolamine (PE), differentially regulate MDC biogenesis. CL depletion impairs MDC biogenesis, whereas blocking mitochondrial PE production leads to constitutive MDC formation. Additionally, in response to metabolic MDC activators, cellular and mitochondrial PE declines, and overexpressing mitochondrial PE synthesis enzymes suppress MDC biogenesis. Altogether, our data indicate a requirement for CL in MDC biogenesis and suggest that PE depletion may stimulate MDC formation downstream of MDC-inducing metabolic stress.


Assuntos
Cardiolipinas , Mitocôndrias , Fosfatidiletanolaminas , Saccharomycetales , Cardiolipinas/metabolismo , Homeostase , Mitocôndrias/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfolipídeos/metabolismo , Saccharomycetales/citologia , Saccharomycetales/metabolismo
5.
bioRxiv ; 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37461645

RESUMO

Preserving the health of the mitochondrial network is critical to cell viability and longevity. To do so, mitochondria employ several membrane remodeling mechanisms, including the formation of mitochondrial-derived vesicles (MDVs) and compartments (MDCs) to selectively remove portions of the organelle. In contrast to well-characterized MDVs, the distinguishing features of MDC formation and composition remain unclear. Here we used electron tomography to observe that MDCs form as large, multilamellar domains that generate concentric spherical compartments emerging from mitochondrial tubules at ER-mitochondria contact sites. Time-lapse fluorescence microscopy of MDC biogenesis revealed that mitochondrial membrane extensions repeatedly elongate, coalesce, and invaginate to form these compartments that encase multiple layers of membrane. As such, MDCs strongly sequester portions of the outer mitochondrial membrane, securing membrane cargo into a protected domain, while also enclosing cytosolic material within the MDC lumen. Collectively, our results provide a model for MDC formation and describe key features that distinguish MDCs from other previously identified mitochondrial structures and cargo-sorting domains.

6.
MicroPubl Biol ; 20222022.
Artigo em Inglês | MEDLINE | ID: mdl-36090151

RESUMO

Fission yeast Dap1 is a heme binding protein required for cytochromes P450 activity. Here, we tested whether Dap1 axial coordination of heme iron is required for its role in the function of the cytochrome P450 enzymes, Erg5 and Erg11. Two different dap1 mutants predicted to alter iron coordination failed to rescue growth on cobalt chloride containing medium which requires Erg5 and Erg11. In addition, deletion of dap1 + did not affect expression of Erg5 or Erg11. PGRMC1, a mammalian Dap1 homolog, does not require heme binding to bind and stabilize cytochromes P450. These experiments highlight important functional differences between these conserved proteins.

7.
Mol Cell ; 82(6): 1086-1088, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35303482

RESUMO

Li et al. (2022) discover that Toxoplasma infection triggers remodeling of the mitochondrial outer membrane through generation of a mitochondrial subdomain termed "structure positive for outer mitochondrial membrane" (SPOT).


Assuntos
Membranas Mitocondriais , Toxoplasma , Mitocôndrias , Membranas Mitocondriais/metabolismo , Toxoplasma/genética
8.
Mol Cell ; 81(18): 3786-3802.e13, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34547239

RESUMO

Amino acids are essential building blocks of life. However, increasing evidence suggests that elevated amino acids cause cellular toxicity associated with numerous metabolic disorders. How cells cope with elevated amino acids remains poorly understood. Here, we show that a previously identified cellular structure, the mitochondrial-derived compartment (MDC), functions to protect cells from amino acid stress. In response to amino acid elevation, MDCs are generated from mitochondria, where they selectively sequester and deplete SLC25A nutrient carriers and their associated import receptor Tom70 from the organelle. Generation of MDCs promotes amino acid catabolism, and their formation occurs simultaneously with transporter removal at the plasma membrane via the multivesicular body (MVB) pathway. The combined loss of vacuolar amino acid storage, MVBs, and MDCs renders cells sensitive to high amino acid stress. Thus, we propose that MDCs operate as part of a coordinated cell network that facilitates amino acid homeostasis through post-translational nutrient transporter remodeling.


Assuntos
Aminoácidos/metabolismo , Mitocôndrias/metabolismo , Estresse Fisiológico/fisiologia , Adaptação Fisiológica , Aminoácidos/toxicidade , Proteínas de Transporte/metabolismo , Homeostase , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/metabolismo , Corpos Multivesiculares/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo
9.
Elife ; 102021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33734083

RESUMO

Mitochondrial import deficiency causes cellular toxicity due to the accumulation of non-imported mitochondrial precursor proteins, termed mitoprotein-induced stress. Despite the burden mis-localized mitochondrial precursors place on cells, our understanding of the systems that dispose of these proteins is incomplete. Here, we cataloged the location and steady-state abundance of mitochondrial precursor proteins during mitochondrial impairment in Saccharomyces cerevisiae. We found that a number of non-imported mitochondrial proteins localize to the nucleus, where they are subjected to proteasome-dependent degradation through a process we term nuclear-associated mitoprotein degradation (mitoNUC). Recognition and destruction of mitochondrial precursors by the mitoNUC pathway requires the presence of an N-terminal mitochondrial targeting sequence and is mediated by combined action of the E3 ubiquitin ligases San1, Ubr1, and Doa10. Impaired breakdown of precursors leads to alternative sequestration in nuclear-associated foci. These results identify the nucleus as an important destination for the disposal of non-imported mitochondrial precursors.


Assuntos
Núcleo Celular/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo
10.
Life Sci Alliance ; 4(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33479049

RESUMO

Deficiencies in mitochondrial import cause the toxic accumulation of non-imported mitochondrial precursor proteins. Numerous fates for non-imported mitochondrial precursors have been identified in budding yeast, including proteasomal destruction, deposition into protein aggregates, and mistargeting to other organelles. Amongst organelles, the ER has emerged as a key destination for a subset of non-imported mitochondrial proteins. However, how ER targeting of various types of mitochondrial proteins is achieved remains incompletely understood. Here, we show that the ER delivery of endogenous mitochondrial transmembrane proteins, especially those belonging to the SLC25A mitochondrial carrier family, is dependent on the guided entry of tail-anchored proteins (GET) complex. Without a functional GET pathway, non-imported mitochondrial proteins destined for the ER are alternatively sequestered into Hsp42-dependent protein foci. Loss of the GET pathway is detrimental to yeast cells experiencing mitochondrial import failure and prevents re-import of mitochondrial proteins from the ER via the ER-SURF pathway. Overall, this study outlines an important role for the GET complex in ER targeting of non-imported mitochondrial carrier proteins.


Assuntos
Retículo Endoplasmático/metabolismo , Membranas Mitocondriais/fisiologia , Transporte Proteico/fisiologia , Proteínas de Transporte/metabolismo , Retículo Endoplasmático/patologia , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
J Cell Biol ; 219(12)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33090183

RESUMO

Mitochondria are dynamic organelles with essential roles in signaling and metabolism. We recently identified a cellular structure called the mitochondrial-derived compartment (MDC) that is generated from mitochondria in response to amino acid overabundance stress. How cells form MDCs is unclear. Here, we show that MDCs are dynamic structures that form and stably persist at sites of contact between the ER and mitochondria. MDC biogenesis requires the ER-mitochondria encounter structure (ERMES) and the conserved GTPase Gem1, factors previously implicated in lipid exchange and membrane tethering at ER-mitochondria contacts. Interestingly, common genetic suppressors of abnormalities displayed by ERMES mutants exhibit distinct abilities to rescue MDC formation in ERMES-depleted strains and are incapable of rescuing MDC formation in cells lacking Gem1. Thus, the function of ERMES and Gem1 in MDC biogenesis may extend beyond their conventional role in maintaining mitochondrial phospholipid homeostasis. Overall, this study identifies an important function for ER-mitochondria contacts in the biogenesis of MDCs.


Assuntos
Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Biogênese de Organelas , Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/genética , Mitocôndrias/genética , Mutação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Cell Metab ; 31(5): 886-887, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32375059

RESUMO

In this issue of Cell Metabolism, Herkenne et al. (2020) show that the mitochondrial fusion protein OPA1 promotes angiogenesis independent of its function in mitochondrial dynamics, identifying a key new therapeutic target to prevent vascular growth during development and tumor formation.


Assuntos
GTP Fosfo-Hidrolases , Dinâmica Mitocondrial , GTP Fosfo-Hidrolases/genética , Mitocôndrias , Proteínas Mitocondriais
13.
Cell ; 180(2): 296-310.e18, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31978346

RESUMO

Mitochondria and lysosomes are functionally linked, and their interdependent decline is a hallmark of aging and disease. Despite the long-standing connection between these organelles, the function(s) of lysosomes required to sustain mitochondrial health remains unclear. Here, working in yeast, we show that the lysosome-like vacuole maintains mitochondrial respiration by spatially compartmentalizing amino acids. Defects in vacuole function result in a breakdown in intracellular amino acid homeostasis, which drives age-related mitochondrial decline. Among amino acids, we find that cysteine is most toxic for mitochondria and show that elevated non-vacuolar cysteine impairs mitochondrial respiration by limiting intracellular iron availability through an oxidant-based mechanism. Cysteine depletion or iron supplementation restores mitochondrial health in vacuole-impaired cells and prevents mitochondrial decline during aging. These results demonstrate that cysteine toxicity is a major driver of age-related mitochondrial deterioration and identify vacuolar amino acid compartmentation as a cellular strategy to minimize amino acid toxicity.


Assuntos
Cisteína/toxicidade , Ferro/metabolismo , Mitocôndrias/metabolismo , Aminoácidos/metabolismo , Senescência Celular/fisiologia , Cisteína/metabolismo , Homeostase , Lisossomos/metabolismo , Mitocôndrias/fisiologia , Mitofagia/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/metabolismo
14.
Dev Cell ; 50(3): 259-260, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31386859

RESUMO

In this issue of Developmental Cell, Wong et al. (2019) show that the lysosomal GTPase Rab7 regulates inter-mitochondrial contacts to control mitochondrial motility and identify dysregulated inter-mitochondrial tethering as a common theme in Charcot-Marie-Tooth (CMT) type 2 disease.


Assuntos
Doença de Charcot-Marie-Tooth , Diabetes Mellitus Tipo 2 , GTP Fosfo-Hidrolases , Humanos , Lisossomos , Mitocôndrias
15.
Mol Biol Cell ; 30(17): 2141-2154, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31141470

RESUMO

Mitochondrial decline is a hallmark of aging, and cells are equipped with many systems to regulate mitochondrial structure and function in response to stress and metabolic alterations. Here, using budding yeast, we identify a proteolytic pathway that contributes to alterations in mitochondrial structure in aged cells through control of the mitochondrial fusion GTPase Fzo1. We show that mitochondrial fragmentation in old cells correlates with reduced abundance of Fzo1, which is triggered by functional alterations in the vacuole, a known early event in aging. Fzo1 degradation is mediated by a proteolytic cascade consisting of the E3 ubiquitin ligases SCFMdm30 and Rsp5, and the Cdc48 cofactor Doa1. Fzo1 proteolysis is activated by metabolic stress that arises from vacuole impairment, and loss of Fzo1 degradation severely impairs mitochondrial structure and function. Together, these studies identify a new mechanism for stress-responsive regulation of mitochondrial structure that is activated during cellular aging.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas F-Box/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Senescência Celular/fisiologia , GTP Fosfo-Hidrolases/metabolismo , Fusão de Membrana/fisiologia , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo
16.
Elife ; 72018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30484772

RESUMO

A new device for isolating large quantities of old yeast cells expands the experimental boundaries of aging research.


Assuntos
Cromatina , Longevidade , Envelhecimento , Genômica , Saccharomyces cerevisiae/genética , Fermento Seco
17.
Nat Commun ; 9(1): 1761, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720625

RESUMO

The understanding that organelles are not floating in the cytosol, but rather held in an organized yet dynamic interplay through membrane contact sites, is altering the way we grasp cell biological phenomena. However, we still have not identified the entire repertoire of contact sites, their tethering molecules and functions. To systematically characterize contact sites and their tethering molecules here we employ a proximity detection method based on split fluorophores and discover four potential new yeast contact sites. We then focus on a little-studied yet highly disease-relevant contact, the Peroxisome-Mitochondria (PerMit) proximity, and uncover and characterize two tether proteins: Fzo1 and Pex34. We genetically expand the PerMit contact site and demonstrate a physiological function in ß-oxidation of fatty acids. Our work showcases how systematic analysis of contact site machinery and functions can deepen our understanding of these structures in health and disease.


Assuntos
Membranas Intracelulares/metabolismo , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Citoplasma/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Peroxinas/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Elife ; 52016 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-27097106

RESUMO

Mitochondrial dysfunction is a hallmark of aging, and underlies the development of many diseases. Cells maintain mitochondrial homeostasis through a number of pathways that remodel the mitochondrial proteome or alter mitochondrial content during times of stress or metabolic adaptation. Here, using yeast as a model system, we identify a new mitochondrial degradation system that remodels the mitochondrial proteome of aged cells. Unlike many common mitochondrial degradation pathways, this system selectively removes a subset of membrane proteins from the mitochondrial inner and outer membranes, while leaving the remainder of the organelle intact. Selective removal of preexisting proteins is achieved by sorting into a mitochondrial-derived compartment, or MDC, followed by release through mitochondrial fission and elimination by autophagy. Formation of MDCs requires the import receptors Tom70/71, and failure to form these structures exacerbates preexisting mitochondrial dysfunction, suggesting that the MDC pathway provides protection to mitochondria in times of stress.


Assuntos
Membranas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/fisiologia , Idoso , Humanos , Transporte Proteico , Proteólise , Saccharomyces cerevisiae/metabolismo
19.
Ageing Res Rev ; 32: 2-12, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27125853

RESUMO

Lysosomes are the main catabolic organelles of a cell and play a pivotal role in a plethora of cellular processes, including responses to nutrient availability and composition, stress resistance, programmed cell death, plasma membrane repair, development, and cell differentiation. In line with this pleiotropic importance for cellular and organismal life and death, lysosomal dysfunction is associated with many age-related pathologies like Parkinson's and Alzheimer's disease, as well as with a decline in lifespan. Conversely, targeting lysosomal functional capacity is emerging as a means to promote longevity. Here, we analyze the current knowledge on the prominent influence of lysosomes on aging-related processes, such as their executory and regulatory roles during general and selective macroautophagy, or their storage capacity for amino acids and ions. In addition, we review and discuss the roles of lysosomes as active players in the mechanisms underlying known lifespan-extending interventions like, for example, spermidine or rapamycin administration. In conclusion, this review aims at critically examining the nature and pliability of the different layers, in which lysosomes are involved as a control hub for aging and longevity.


Assuntos
Envelhecimento/fisiologia , Doença de Alzheimer , Longevidade/fisiologia , Lisossomos , Doença de Parkinson , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Apoptose/fisiologia , Autofagia/fisiologia , Humanos , Lisossomos/patologia , Lisossomos/fisiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia
20.
Trends Endocrinol Metab ; 26(2): 59-68, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25591985

RESUMO

The budding yeast Saccharomyces cerevisiae has served as a remarkable model organism for numerous seminal discoveries in biology. This paradigm extends to the mitochondria, a central hub for cellular metabolism, where studies in yeast have helped to reinvigorate the field and launch an exciting new era in mitochondrial biology. Here we discuss a few recent examples in which yeast research has laid a foundation for our understanding of evolutionarily conserved mitochondrial processes and functions, from key factors and pathways involved in the assembly of oxidative phosphorylation (OXPHOS) complexes to metabolite transport, lipid metabolism, and interorganelle communication. We also highlight new areas of yeast mitochondrial biology that are likely to aid in our understanding of the mitochondrial etiology of disease in the future.


Assuntos
Fenômenos Fisiológicos Celulares/genética , Técnicas Genéticas/estatística & dados numéricos , Saccharomyces cerevisiae/genética , Animais , Transporte Biológico/genética , Humanos , Redes e Vias Metabólicas/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fosforilação Oxidativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA