Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
One Health ; 17: 100641, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38024255

RESUMO

Ectoparasites found on bats are known to contain important microbes. However, the viruses hosted by these obligate parasites are understudied. This has led to the near oversight of the potential role of these ectoparasites in virus maintenance and transmission from bats to other interacting species and the environment. Here, we sampled bat ectoparasites parasitizing a diverse selection of bat species in the families Rhinolophidae, Vespertilionidae, Megadermatidae, Hipposideridae and Pteropodidae in Yunnan Province, China. We show that the ectoparasite prevalence was generally higher in male compared to female bats. Most ectoparasites were found to fall within the Nycteribiidae, Spinturnicidae and Streblidae bat ectoparasite families. We subsequently applied a non-biased sequencing of libraries prepared from the pooled ectoparasites, followed by an in-silico virus-centric analysis of the resultant reads. We show that ectoparasites hosted by the sampled families of bats are found to carry, in addition to a diverse set of phages, vertebrate and insect viruses in the families Aliusviridae, Ascoviridae, Chuviridae, Circoviridae, Flaviviridae, Hepadnaviridae, Hepeviridae, Herpesviridae, Iridoviridae, Marseilleviridae, Nairoviridae, Orthomyxoviridae, Parvoviridae, Poxviridae, Reoviridae, Retroviridae, and Rhabdoviridae. We further report a partial Parvovirus VP1/VP2 gene and partial Poxvirus ubiquitin-like gene predicted by two independent next generation sequencing data analysis pipelines. This study describes the natural virome of bat ectoparasites, providing a platform for understanding the role these ectoparasites play in the maintenance and spread of viruses to other animals.

2.
Sci Total Environ ; 905: 166802, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37683854

RESUMO

Over the past two decades, soybean cultivation has become one of the principal replacements for forests in the Brazilian Amazon. Previous studies showed that the conversion of forests into large-scale soybean farms has different effects on local and regional climate than other forms of land use, e.g., conversion to pasture. The bio-geophysical feedbacks that lead to changes in temperature and rainfall caused by the expansion of commodity crops is not fully understood, and this has implications for both modelling potential future climatic change and understanding its impact. Here we performed model simulations to characterize the feedback to climate caused by the replacement of Amazonian forests with soybean and pastures. Our results show that: when compared to deforestation caused by pastures, the conversion of forests into soybean plantations results in more pronounced changes in the atmospheric boundary layer. Because they are characterized by a period of the year with bare soil, soybean fields transmit more long-wave radiation to the atmosphere than pastures, leading to an increase in boundary layer average temperature by 2.4 K. Although soybean plantations tend to strengthen convective lifting, the decrease in boundary layer water vapor content plays a decisive role in reducing rainfall. Finally, we demonstrate that the climatic impacts associated with the replacement of forests by soybean is likely to be magnified with agricultural expansion along new frontiers in the northern and western regions of the Amazon basin due to a more pronounced reduction in water vapor content.


Assuntos
Glycine max , Vapor , Retroalimentação , Conservação dos Recursos Naturais , Florestas , Brasil
3.
BMC Ecol Evol ; 22(1): 112, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192699

RESUMO

BACKGROUND: Family Rhinolophidae (horseshoe bats), Hipposideridae (leaf-nosed bats) and Rhinonycteridae (trident bats) are exclusively distributed in the Old-World, and their biogeography reflects the complex historic geological events throughout the Cenozoic. Here we investigated the origin of these families and unravel the conflicting family origin theories using a high resolution tree covering taxa from each zoogeographic realm from Africa to Australia. Ancestral range estimations were performed using a probabilistic approach implemented in BioGeoBEARS with subset analysis per biogeographic range [Old-World as whole, Australia-Oriental-Oceania (AOO) and Afrotropical-Madagascar-Palearctic (AMP)]. RESULT: Our result supports an Oriental origin for Rhinolophidae, whereas Hipposideridae originated from the Oriental and African regions in concordance with fossil evidence of both families. The fossil evidence indicates that Hipposideridae has diversified across Eurasia and the Afro-Arabian region since the Middle Eocene. Meanwhile, Rhinonycteridae (the sister family of Hipposideridae) appears to have originated from the Africa region splitting from the common ancestor with Hipposideridae in Africa. Indomalaya is the center of origin of Rhinolophidae AOO lineages, and Indomalayan + Philippines appears to be center of origin of Hipposideridae AOO lineage indicating allopatric speciation and may have involved jump-dispersal (founder-event) speciation within AOO lineage. Wallacea and the Philippines may have been used as stepping stones for dispersal towards Oceania and Australia from the Oriental region. Multiple colonization events via different routes may have occurred in the Philippines (i.e., Palawan and Wallacea) since the Late Miocene. The colonization of Rhinolophidae towards Africa from Asia coincided with the estimated time of Tethys Ocean closure around the Oligocene to Miocene (around 27 Ma), allowing species to disperse via the Arabian Peninsula. Additionally, the number of potential cryptic species in Rhinolophidae in Southeast Asia may have increased since Plio-Pleistocene and late Miocene. CONCLUSION: Overall, we conclude an Oriental origin for Rhinolophidae, and Oriental + African for Hipposideridae. The result demonstrates that complex historical events, in addition to species specific ecomorphology and specialization of ecological niches may shape current distributions.


Assuntos
Quirópteros , Besouros , Animais , Evolução Biológica , Quirópteros/genética , Fósseis , Filogenia
4.
Microorganisms ; 10(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35744747

RESUMO

Humans continue to encroach on the habitats of wild animals, potentially bringing different species into contact that would not typically encounter each other under natural circumstances, and forcing them into stressful, suboptimal conditions. Stressors from unsustainable human land use changes are suspected to dramatically exacerbate the probability of zoonotic spillover of pathogens from their natural reservoir hosts to humans, both by increasing viral load (and shedding) and the interface between wildlife with livestock, pets and humans. Given their known role as reservoir hosts, bats continue to be investigated for their possible role as the origins of many viral outbreaks. However, the participation of bat-associated ectoparasites in the spread of potential pathogens requires further work to establish. Here, we conducted a comprehensive review of viruses, viral genes and other viral sequences obtained from bat ectoparasites from studies over the last four decades. This review summarizes research findings of the seven virus families in which these studies have been performed, including Paramyxoviridae, Reoviridae, Flaviviridae, Peribunyaviridae, Nairoviridae, Rhabdoviridae and Filoviridae. We highlight that bat ectoparasites, including dipterans and ticks, are often found to have medically important viruses and may have a role in the maintenance of these pathogens within bat populations.

5.
Sci Total Environ ; 843: 156909, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35753458

RESUMO

Research and media attention is disproportionately focused on taxa and ecosystems perceived as charismatic, while other equally diverse systems such as caves and subterranean ecosystems are often neglected in biodiversity assessments and prioritisations. Highlighting the urgent need for protection, an especially large fraction of cave endemic species may be undescribed. Yet these more challenging systems are also vulnerable, with karsts for example losing a considerable proportion of their area each year. Bats are keystone to cave ecosystems making them potential surrogates to understand cave diversity patterns and identify conservation priorities. On a global scale, almost half (48 %) of known bat species use caves for parts of their life histories, with 32 % endemic to a single country, and 15 % currently threatened. We combined global analysis of cave bats from the IUCN spatial data with site-specific analysis of 1930 bat caves from 46 countries to develop global priorities for the conservation of the most vulnerable subterranean ecosystems. Globally, 28 % of caves showed high bat diversity and were highly threatened. The highest regional concentration of conservation priority caves was in the Palearctic and tropical regions (except the Afrotropical, which requires more intensive cave data sampling). Our results further highlight the importance of prioritising bat caves by incorporating locally collected data and optimising parameter selection (i.e., appropriate landscape features and threats). Finally, to protect and conserve these ecosystems it is crucial that we use frameworks such as this to identify priorities in species and habitat-level and map vulnerable underground habitats with the highest biodiversity and distinctiveness.


Assuntos
Cavernas , Quirópteros , Animais , Biodiversidade , Conservação dos Recursos Naturais , Ecossistema
6.
Sci Data ; 9(1): 155, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383183

RESUMO

Understanding biodiversity patterns as well as drivers of population declines, and range losses provides crucial baselines for monitoring and conservation. However, the information needed to evaluate such trends remains unstandardised and sparsely available for many taxonomic groups and habitats, including the cave-dwelling bats and cave ecosystems. We developed the DarkCideS 1.0 ( https://darkcides.org/ ), a global database of bat caves and species synthesised from publicly available information and datasets. The DarkCideS 1.0 is by far the largest database for cave-dwelling bats, which contains information for geographical location, ecological status, species traits, and parasites and hyperparasites for 679 bat species are known to occur in caves or use caves in part of their life histories. The database currently contains 6746 georeferenced occurrences for 402 cave-dwelling bat species from 2002 cave sites in 46 countries and 12 terrestrial biomes. The database has been developed to be collaborative and open-access, allowing continuous data-sharing among the community of bat researchers and conservation biologists to advance bat research and comparative monitoring and prioritisation for conservation.


Assuntos
Quirópteros , Animais , Biodiversidade , Bases de Dados Factuais , Ecossistema
8.
BMC Ecol Evol ; 21(1): 199, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732135

RESUMO

BACKGROUND: In genus Rhinolophus, species in the Rhinolophus philippinensis and R. macrotis groups are unique because the horseshoe bats in these group have relatively low echolocation frequencies and flight speeds compared with other horseshoe bats with similar body size. The different characteristics among bat species suggest particular evolutionary processes may have occurred in this genus. To study the adaptive evidence in the mitochondrial genomes (mitogenomes) of rhinolophids, especially the mitogenomes of the species with low echolocation frequencies, we sequenced eight mitogenomes and used them for comparative studies of molecular phylogeny and adaptive evolution. RESULTS: Phylogenetic analysis using whole mitogenome sequences produced robust results and provided phylogenetic signals that were better than those obtained using single genes. The results supported the recent establishment of the separate macrotis group. The signals of adaptive evolution discovered in the Rhinolophus species were tested for some of the codons in two genes (ND2 and ND6) that encode NADH dehydrogenases in oxidative phosphorylation system complex I. These genes have a background of widespread purifying selection. Signals of relaxed purifying selection and positive selection were found in ND2 and ND6, respectively, based on codon models and physicochemical profiles of amino acid replacements. However, no pronounced overlap was found for non-synonymous sites in the mitogenomes of all the species with low echolocation frequencies. A signal of positive selection for ND5 was found in the branch-site model when R. philippinensis was set as the foreground branch. CONCLUSIONS: The mitogenomes provided robust phylogenetic signals that were much more informative than the signals obtained using single mitochondrial genes. Two mitochondrial genes that encoding proteins in the oxidative phosphorylation system showed some evidence of adaptive evolution in genus Rhinolophus and the positive selection signals were tested for ND5 in R. philippinensis. These results indicate that mitochondrial protein-coding genes were targets of adaptive evolution during the evolution of Rhinolophus species, which might have contributed to a diverse range of acoustic adaptations in this genus.


Assuntos
Quirópteros , Ecolocação , Genoma Mitocondrial , Seleção Genética , Animais , Quirópteros/genética , Evolução Molecular , Genes Mitocondriais , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA