Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 139(30): 10382-10394, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28648060

RESUMO

Electronic impurity doping of bulk semiconductors is an essential component of semiconductor science and technology. Yet there are only a handful of studies demonstrating control of electronic impurities in semiconductor nanocrystals. Here, we studied electronic impurity doping of colloidal PbSe quantum dots (QDs) using a postsynthetic cation exchange reaction in which Pb is exchanged for Ag. We found that varying the concentration of dopants exposed to the as-synthesized PbSe QDs controls the extent of exchange. The electronic impurity doped QDs exhibit the fundamental spectroscopic signatures associated with injecting a free charge carrier into a QD under equilibrium conditions, including a bleach of the first exciton transition and the appearance of a quantum-confined, low-energy intraband absorption feature. Photoelectron spectroscopy confirms that Ag acts as a p-type dopant for PbSe QDs and infrared spectroscopy is consistent with k·p calculations of the size-dependent intraband transition energy. We find that to bleach the first exciton transition by an average of 1 carrier per QD requires that approximately 10% of the Pb be replaced by Ag. We hypothesize that the majority of incorporated Ag remains at the QD surface and does not interact with the core electronic states of the QD. Instead, the excess Ag at the surface promotes the incorporation of <1% Ag into the QD core where it causes p-type doping behavior.

2.
J Phys Chem Lett ; 7(18): 3660-5, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27583443

RESUMO

A series of covalent organic framework (COF) structures is synthesized that possesses a tunable density of covalently bound nitroxyl radicals within the COF pores. The highest density of organic radicals produces an electron paramagnetic resonance (EPR) signal that suggests the majority of radicals strongly interact with other radicals, whereas for smaller loadings the EPR signals indicate the radicals are primarily isolated but with restricted motion. The dielectric loss as determined from microwave absorption of the framework structures compared with an amorphous control suggests that free motion of the radicals is inhibited when more than 25% of available sites are occupied. The ability to tune the mode of radical interactions and the subsequent effect on redox, electrical, and optical characteristics in a porous framework may lead to a class of structures with properties ideal for photoelectrochemistry or energy storage.

3.
J Phys Chem Lett ; 6(8): 1414-9, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-26263144

RESUMO

The relationship between the polymer network and electronic transport properties for stable radical polymeric materials has come under investigation owing to their potential application in electronic devices. For the radical polymer poly(2,2,6,6-tetramethylpiperidine-4-yl-1-oxyl methacrylate), it is unclear whether the radical packing is optimal for charge transport partially because the relationship between radical packing and molecular structure is not well-understood. Using the paramagnetic nitroxide radical as a probe of the polymer and synthetic techniques to control the radical concentration on the methyl methacrylate backbone, we investigate the dependence of radical concentration on molecular structure. The electron paramagnetic resonance data indicate that radicals in the PTMA assume a closest approach distance to each other when more than 60% of the backbone is populated with radical pendant groups. Below 60% coverage, the polymer rearranges to accommodate larger radical-radical spacing. These findings are consistent with theoretical calculations and help explain some experimentally determined electron-transport properties.

4.
J Phys Chem B ; 118(43): 12541-8, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25329883

RESUMO

Stable nitroxide radical bearing organic polymer materials are attracting much attention for their application as next generation energy storage materials. A greater understanding of the inherent charge transfer mechanisms in such systems will ultimately be paramount to further advancements in the understanding of both intrafilm and interfacial ion- and electron-transfer reactions. This work is focused on advancing the fundamental understanding of these dynamic charge transfer properties by exploiting the fact that these species are efficient fluorescence quenchers. We systematically incorporated fluorescent perylene dyes into solutions containing the 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) radical and controlled their interaction by binding the TEMPO moiety into macromolecules with varying morphologies (e.g., chain length, density of radical pendant groups). In the case of the model compound, 4-oxo-TEMPO, quenching of the perylene excited state was found to be dominated by a dynamic (collisional) process, with a contribution from an apparent static process that is described by an ∼2 nm quenching sphere of action. When we incorporated the TEMPO unit into a macromolecule, the quenching behavior was altered significantly. The results can be described by using two models: (A) a collisional quenching process that becomes less efficient, presumably due to a reduction in the diffusion constant of the quenching entity, with a quenching sphere of action similar to 4-oxo-TEMPO or (B) a collisional quenching process that becomes more efficient as the radius of interaction grows larger with increasing oligomer length. This is the first study that definitively illustrates that fluorophore quenching by a polymer system cannot be explained using merely a classical Stern-Volmer approach but rather necessitates a more complex model.


Assuntos
Corantes Fluorescentes/química , Óxidos de Nitrogênio/química , Perileno/química , Polímeros/química , Óxidos N-Cíclicos/química , Conformação Molecular , Simulação de Dinâmica Molecular , Piperidinas/química , Espectrometria de Fluorescência
5.
J Am Chem Soc ; 136(12): 4670-9, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24564575

RESUMO

We report the synthesis and characterization of Pb-chalcogenide fused quantum-dot (QD) dimer structures. The resulting QD dimers range in length from 6 to 16 nm and are produced by oriented attachment of single QD monomers with diameters of 3.1-7.8 nm. QD monomers with diameters exceeding about 5 nm appear to have the greatest affinity for QD dimer formation and, therefore, gave the greatest yields of fused structures. We find a new absorption feature in the first exciton QD dimer spectra and assign this to a splitting of the 8-fold degenerate 1S-level. The dimer splitting increases from 50 to 140 meV with decrease of the QD-monomer size, and we present a mechanism that accounts for this splitting. We also demonstrate the possibility of fusing two QDs with different sizes into a heterostructure.

6.
ACS Nano ; 6(6): 4573-9, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22702739

RESUMO

Nanoscale colloidal semiconductor structures with at least one dimension small enough to experience quantum confinement effects have captured the imagination and attention of scientists interested in controlling various chemical and photophysical processes. Aside from having desirable quantum confinement properties, colloidal nanocrystals are attractive because they are often synthesized in low-temperature, low-cost, and potentially scalable manners using simple benchtop reaction baths. Considerable progress in producing a variety of shapes, compositions, and complex structures has been achieved. However, there are challenges to overcome in order for these novel materials to reach their full potential and become new drivers for commercial applications. The final shape, composition, nanocrystal-ligand structure, and size can depend on a delicate interplay of precursors, surface ligands, and other compounds that may or may not participate in the reaction. In this Perspective, we discuss current efforts toward better understanding how the reactivity of the reagents can be used to produce unique and complex nanostructures.


Assuntos
Coloides/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Semicondutores , Cristalização/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Teoria Quântica , Propriedades de Superfície
7.
ACS Nano ; 6(6): 5498-506, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22571723

RESUMO

We have synthesized alkylselenide reagents to replace the native oleate ligand on PbSe quantum dots (QDs) in order to investigate the effect of surface modification on their stoichiometry, photophysics, and air stability. The alkylselenide reagent removes all of the oleate on the QD surface and results in Se addition; however, complete Se enrichment does not occur, achieving a 53% decrease in the amount of excess Pb for 2 nm diameter QDs and a 23% decrease for 10 nm QDs. Our analysis suggests that the Se ligand preferentially binds to the {111} faces, which are more prevalent in smaller QDs. We find that attachment of the alkylselenide ligand to the QD surface enhances oxidative resistance, likely resulting from a more stable bond between surface Pb atoms and the alkylselenide ligand compared to Pb-oleate. However, binding of the alkylselenide ligand produces a separate nonradiative relaxation route that partially quenches PL, suggesting the formation of a dark hole-trap.


Assuntos
Chumbo/química , Pontos Quânticos , Compostos de Selênio/química , Selênio/química , Cristalização/métodos , Chumbo/efeitos da radiação , Luz , Teste de Materiais , Compostos de Selênio/efeitos da radiação
8.
J Phys Chem Lett ; 2(8): 889-93, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-26295624

RESUMO

Clear evidence for two emitting states in PbSe nanocrystals (NCs) has been observed. The flow of population between these two states as temperature increases is interrupted by the presence of nonradiative trap states correlated with the exposure of the NC film to air. Quenching of the higher-energy emission begins after only seconds of exposure, with the effect saturating after several days. Unlike short-term oxygen-related effects in solution, the emission quenching appears to be irreversible, signaling a distinction between surface reactivity in NCs in films and that in solution. The origin of the two emissive centers and the impact of trapping on other NC film properties (e.g., electron/hole mobilities) remain important issues to be resolved.

9.
Nano Lett ; 10(8): 3019-27, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20698615

RESUMO

Multiple exciton generation (MEG) in quantum dots (QDs) and impact ionization (II) in bulk semiconductors are processes that describe producing more than one electron-hole pair per absorbed photon. We derive expressions for the proper way to compare MEG in QDs with II in bulk semiconductors and argue that there are important differences in the photophysics between bulk semiconductors and QDs. Our analysis demonstrates that the fundamental unit of energy required to produce each electron-hole pair in a given QD is the band gap energy. We find that the efficiency of the multiplication process increases by at least 2 in PbSe QDs compared to bulk PbSe, while the competition between cooling and multiplication favors multiplication by a factor of 3 in QDs. We also demonstrate that power conversion efficiencies in QD solar cells exhibiting MEG can greatly exceed conversion efficiencies of their bulk counterparts, especially if the MEG threshold energy can be reduced toward twice the QD band gap energy, which requires a further increase in the MEG efficiency. Finally, we discuss the research challenges associated with achieving the maximum benefit of MEG in solar energy conversion since we show the threshold and efficiency are mathematically related.

10.
J Am Chem Soc ; 130(18): 5974-85, 2008 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-18396872

RESUMO

We describe the structural, optical, and electrical properties of films of spin-cast, oleate-capped PbSe nanocrystals that are treated thermally or chemically in solutions of hydrazine, methylamine, or pyridine to produce electronically coupled nanocrystal solids. Postdeposition heat treatments trigger nanocrystal sintering at approximately 200 degrees C, before a substantial fraction of the oleate capping group evaporates or pyrolyzes. The sintered nanocrystal films have a large hole density and are highly conductive. Most of the amine treatments preserve the size of the nanocrystals and remove much of the oleate, decreasing the separation between nanocrystals and yielding conductive films. X-ray scattering, X-ray photoelectron and optical spectroscopy, electron microscopy, and field-effect transistor electrical measurements are used to compare the impact of these chemical treatments. We find that the concentration of amines adsorbed to the NC films is very low in all cases. Treatments in hydrazine in acetonitrile remove only 2-7% of the oleate yet result in high-mobility n-type transistors. In contrast, ethanol-based hydrazine treatments remove 85-90% of the original oleate load. Treatments in pure ethanol strip 20% of the oleate and create conductive p-type transistors. Methylamine- and pyridine-treated films are also p-type. These chemically treated films oxidize rapidly in air to yield, after short air exposures, highly conductive p-type nanocrystal solids. Our results aid in the rational development of solar cells based on colloidal nanocrystal films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA