Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 5488, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940846

RESUMO

Insertional mutagenesis is a powerful means of identifying cancer drivers in animal models. We used the Sleeping Beauty (SB) transposon/transposase system to identify activated oncogenes in hematologic cancers in wild-type mice and mice that express a stabilized cyclin E protein (termed cyclin ET74AT393A). Cyclin E governs cell division and is misregulated in human cancers. Cyclin ET74AT393A mice develop ineffective erythropoiesis that resembles early-stage human myelodysplastic syndrome, and we sought to identify oncogenes that might cooperate with cyclin E hyperactivity in leukemogenesis. SB activation in hematopoietic precursors caused T-cell leukemia/lymphomas (T-ALL) and pure red blood cell erythroleukemias (EL). Analysis of >12,000 SB integration sites revealed markedly different oncogene activations in EL and T-ALL: Notch1 and Ikaros were most common in T-ALL, whereas ETS transcription factors (Erg and Ets1) were targeted in most ELs. Cyclin E status did not impact leukemogenesis or oncogene activations. Whereas most SB insertions were lost during culture of EL cell lines, Erg insertions were retained, indicating Erg's key role in these neoplasms. Surprisingly, cyclin ET74AT393A conferred growth factor independence and altered Erg-dependent differentiation in EL cell lines. These studies provide new molecular insights into erythroid leukemia and suggest potential therapeutic targets for human leukemia.


Assuntos
Ciclina E/genética , Leucemia Eritroblástica Aguda/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Transposases/genética , Animais , Técnicas de Cultura de Células , Elementos de DNA Transponíveis , Modelos Animais de Doenças , Predisposição Genética para Doença , Camundongos , Mutagênese Insercional , Proteínas Oncogênicas/genética , Regulador Transcricional ERG/genética
2.
Mol Cell Biol ; 37(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28137908

RESUMO

Cyclin E, in conjunction with its catalytic partner cyclin-dependent kinase 2 (CDK2), regulates cell cycle progression as cells exit quiescence and enter S-phase. Multiple mechanisms control cyclin E periodicity during the cell cycle, including phosphorylation-dependent cyclin E ubiquitylation by the SCFFbw7 ubiquitin ligase. Serine 384 (S384) is the critical cyclin E phosphorylation site that stimulates Fbw7 binding and cyclin E ubiquitylation and degradation. Because S384 is autophosphorylated by bound CDK2, this presents a paradox as to how cyclin E can evade autocatalytically induced degradation in order to phosphorylate its other substrates. We found that S384 phosphorylation is dynamically regulated in cells and that cyclin E is specifically dephosphorylated at S384 by the PP2A-B56 phosphatase, thereby uncoupling cyclin E degradation from cyclin E-CDK2 activity. Furthermore, the rate of S384 dephosphorylation is high in interphase but low in mitosis. This provides a mechanism whereby interphase cells can oppose autocatalytic cyclin E degradation and maintain cyclin E-CDK2 activity while also enabling cyclin E destruction in mitosis, when inappropriate cyclin E expression is genotoxic.


Assuntos
Biocatálise , Ciclina E/metabolismo , Proteína Fosfatase 2/metabolismo , Proteólise , Ciclo Celular , Proteínas de Ciclo Celular/deficiência , Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/metabolismo , Proteína 7 com Repetições F-Box-WD , Células HCT116 , Células HeLa , Humanos , Fosforilação , Fosfosserina/metabolismo , Estabilidade Proteica , Subunidades Proteicas/metabolismo , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/metabolismo
3.
Proc Natl Acad Sci U S A ; 110(22): 8954-9, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23671119

RESUMO

Cyclin-dependent kinases (Cdks) coordinate cell division, and their activities are tightly controlled. Phosphorylation of threonine 14 (T14) and tyrosine 15 (Y15) inhibits Cdks and regulates their activities in numerous physiologic contexts. Although the roles of Cdk1 inhibitory phosphorylation during mitosis are well described, studies of Cdk2 inhibitory phosphorylation during S phrase have largely been indirect. To specifically study the functions of Cdk2 inhibitory phosphorylation, we used gene targeting to make an endogenous Cdk2 knockin allele in human cells, termed Cdk2AF, which prevents Cdk2 T14 and Y15 phosphorylation. Cdk2AF caused premature S-phase entry, rapid cyclin E degradation, abnormal DNA replication, and genome instability. Cdk2AF cells also exhibited strikingly abnormal responses to replication stress, accumulated irreparable DNA damage, and permanently exited the cell cycle after transient exposure to S-phase inhibitors. Our results reveal the specific and essential roles of Cdk2 inhibitory phosphorylation in the successful execution of the replication stress checkpoint response and in maintaining genome integrity.


Assuntos
Quinase 2 Dependente de Ciclina/metabolismo , Replicação do DNA/fisiologia , Fase S/fisiologia , Transdução de Sinais/fisiologia , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/genética , Dano ao DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Eletroforese em Gel de Campo Pulsado , Citometria de Fluxo , Técnicas de Introdução de Genes , Instabilidade Genômica/fisiologia , Humanos , Microfluídica , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Pontos de Checagem da Fase S do Ciclo Celular/fisiologia , Fatores de Transcrição/metabolismo
4.
Mol Cell ; 44(2): 225-34, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22017871

RESUMO

Regulation of gene expression plays an integral role in adaptation of cells to hypoxic stress. In mammals, prolyl hydroxylases control levels of the central transcription factor hypoxia inducible factor (HIF) through regulation of HIFα subunit stability. Here, we report that the hydroxylase Ofd1 regulates the Sre1 hypoxic transcription factor in fission yeast by controlling DNA binding. Prolyl hydroxylases require oxygen as a substrate, and the activity of Ofd1 regulates Sre1-dependent transcription. In the presence of oxygen, Ofd1 binds the Sre1 N-terminal transcription factor domain (Sre1N) and inhibits Sre1-dependent transcription by blocking DNA binding. In the absence of oxygen, the inhibitor Nro1 binds Ofd1, thereby releasing Sre1N and leading to activation of genes required for hypoxic growth. In contrast to the HIF system, where proline hydroxylation is essential for regulation, Ofd1 inhibition of Sre1N does not require hydroxylation and, thus, defines a new mechanism for hypoxic gene regulation.


Assuntos
Oxigênio/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/metabolismo , Sítios de Ligação , Hipóxia Celular/fisiologia , DNA Fúngico/metabolismo , Hidroxilação , Pró-Colágeno-Prolina Dioxigenase/genética , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Schizosaccharomyces/enzimologia , Proteínas de Schizosaccharomyces pombe/metabolismo
5.
J Biol Chem ; 284(31): 20512-21, 2009 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-19520858

RESUMO

Sre1, the fission yeast sterol regulatory element-binding protein (SREBP), is an endoplasmic reticulum (ER) membrane-bound transcription factor that is a principal regulator of hypoxic gene expression. Under low oxygen, Sre1 is cleaved from its inactive ER precursor form to generate an active nuclear transcription factor that up-regulates genes required for low oxygen growth. To maintain a constant supply of Sre1, Sre1 precursor synthesis must be regulated to replenish Sre1 precursor lost to proteolytic cleavage under low oxygen. In this study, we investigated the mechanisms controlling Sre1 precursor levels. We found that positive feedback regulation at the sre1(+) promoter increases the synthesis of the Sre1 precursor under low oxygen and that this regulation is required for maximal Sre1 activation and target gene expression. We also demonstrate that the Sre1 precursor is rapidly degraded by the proteasome in the absence of its binding partner Scp1, which is required for oxygen-regulated Sre1 cleavage. Degradation of Sre1 in the absence of Scp1 requires the ER-associated degradation (ERAD) components Ubc7, an E2 ubiquitin conjugating enzyme, and Hrd1, an E3 ubiquitin ligase. We conclude that positive feedback regulation to up-regulate Sre1 precursor synthesis under low oxygen is essential for Sre1 function and propose that excess Sre1 precursor is removed by ERAD to ensure complex formation between Sre1 and its binding partner Scp1. Thus, Sre1 is a new example of an endogenous ERAD substrate, establishing fission yeast as an organism for the study of this important degradative pathway.


Assuntos
Retículo Endoplasmático/enzimologia , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Retroalimentação Fisiológica , Proteínas dos Microfilamentos/metabolismo , Regiões Promotoras Genéticas/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Schizosaccharomyces/citologia , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo
6.
EMBO J ; 28(2): 135-43, 2009 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19158663

RESUMO

Sre1, the fission yeast sterol regulatory element-binding protein, is an ER membrane-bound transcription factor that controls adaptation to low oxygen growth. Under low oxygen, Sre1 is proteolytically cleaved and the N-terminal transcription factor domain (Sre1N) is released from the membrane and enters the nucleus to activate hypoxic gene expression. Ofd1, a prolyl 4-hydroxylase-like 2-oxoglutarate dioxygenase, controls the oxygen-dependent stability of Sre1N. In the presence of oxygen, Ofd1 accelerates the degradation of Sre1N, but under low oxygen Ofd1 is inhibited and Sre1N accumulates. To identify the regulators of Sre1N, we performed a plasmid-based screen for genes that increased Sre1N transcriptional activity. Here, we identify Nro1 (SPCC4B3.07) as a positive regulator of Sre1N stability and a direct inhibitor of Ofd1. In the absence of oxygen, Nro1 binds to the Ofd1 C-terminal degradation domain and inhibits Sre1N degradation. In the presence of oxygen, Nro1 binding to Ofd1 is disrupted, leading to rapid degradation of Sre1N. We conclude that the Ofd1 dioxygenase domain functions as an oxygen sensor that regulates binding of Nro1 to Ofd1 to control oxygen-dependent Sre1N stability.


Assuntos
Proteínas de Transporte/metabolismo , Oxigênio/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Ativação Transcricional , Mutação , Ligação Proteica , Proteínas de Schizosaccharomyces pombe/genética
7.
EMBO J ; 27(10): 1491-501, 2008 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-18418381

RESUMO

Sre1, the fission yeast sterol regulatory element binding protein, is an endoplasmic reticulum membrane-bound transcription factor that responds to changes in oxygen-dependent sterol synthesis as an indirect measure of oxygen availability. Under low oxygen, Sre1 is proteolytically cleaved and the released N-terminal transcription factor (Sre1N) activates gene expression essential for hypoxic growth. Here, we describe an oxygen-dependent mechanism for regulation of Sre1 that is independent of sterol-regulated proteolysis. Using yeast expressing only Sre1N, we show that Sre1N turnover is regulated by oxygen. Ofd1, an uncharacterized prolyl 4-hydroxylase-like 2-oxoglutarate-Fe(II) dioxygenase, accelerates Sre1N degradation in the presence of oxygen. However, unlike the prolyl 4-hydroxylases that regulate mammalian hypoxia-inducible factor, Ofd1 uses multiple domains to regulate Sre1N degradation by oxygen; the Ofd1 N-terminal dioxygenase domain is required for oxygen sensing and the Ofd1 C-terminal domain accelerates Sre1N degradation. Our data support a model whereby the Ofd1 N-terminal dioxygenase domain is an oxygen sensor that regulates the activity of the C-terminal degradation domain.


Assuntos
Oxigênio/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Sequência de Aminoácidos , Anaerobiose , Humanos , Dados de Sequência Molecular , Pró-Colágeno-Prolina Dioxigenase/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Estrutura Terciária de Proteína , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Ligação a Elemento Regulador de Esterol/genética
8.
Nucleic Acids Res ; 36(6): 2024-31, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18276645

RESUMO

Eukaryotic cells respond to changes in environmental oxygen supply by increasing transcription and subsequent translation of gene products required for adaptation to low oxygen. In fission yeast, the ortholog of mammalian sterol regulatory element binding protein (SREBP), called Sre1, activates low-oxygen gene expression and is essential for anaerobic growth. Previous studies in multiple organisms indicate that SREBP transcription factors function as positive regulators of gene expression by increasing transcription. Here, we describe a unique mechanism by which activation of Sre1-dependent transcription downregulates protein expression under low oxygen. Paradoxically, Sre1 inhibits expression of tco1(+) gene product by activating its transcription. Under low oxygen, Sre1 directs transcription of tco1(+) from an alternate, upstream promoter and inhibits expression of the normoxic tco1(+) transcript. The resulting low-oxygen transcript contains an additional 751 nt in the 5' untranslated region that is predicted to form a stable, complex secondary structure. Interestingly, polysome profile experiments revealed that this new longer transcript is translationally silent, leading to a decrease in Tco1 protein expression under low oxygen. Together, these results describe a new mechanism for oxygen-dependent control of gene expression and provide an example of negative regulation of protein expression by an SREBP homolog.


Assuntos
Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Biossíntese de Proteínas , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Regiões 5' não Traduzidas/química , Conformação de Ácido Nucleico , Oxigênio/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/biossíntese , Proteínas de Schizosaccharomyces pombe/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA