Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 25(1): 82-101, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38228789

RESUMO

The E. coli Paraquat Inducible (Pqi) Pathway is a putative Gram-negative phospholipid transport system. The pathway comprises three components: an integral inner membrane protein (PqiA), a periplasmic spanning MCE family protein (PqiB) and an outer membrane lipoprotein (PqiC). Interactions between all complex components, including stoichiometry, remain uncharacterised; nevertheless, once assembled into their quaternary complex, the trio of Pqi proteins are anticipated to provide a continuous channel between the inner and outer membranes of diderms. Here, we present X-ray structures of both the native and a truncated, soluble construct of the PqiC lipoprotein, providing insight into its biological assembly, and utilise neutron reflectometry to characterise the nature of the PqiB-PqiC-membrane interaction. Finally, we employ phenotypic complementation assays to probe specific PqiC residues, which imply the interaction between PqiB and PqiC is less intimate than previously anticipated.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Membrana/metabolismo , Transporte Biológico , Lipoproteínas/metabolismo
2.
Biophys J ; 120(23): 5295-5308, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34757080

RESUMO

The outer membrane of Gram-negative bacteria presents a robust physicochemical barrier protecting the cell from both the natural environment and acting as the first line of defense against antimicrobial materials. The proteins situated within the outer membrane are responsible for a range of biological functions including controlling influx and efflux. These outer membrane proteins (OMPs) are ultimately inserted and folded within the membrane by the ß-barrel assembly machine (Bam) complex. The precise mechanism by which the Bam complex folds and inserts OMPs remains unclear. Here, we have developed a platform for investigating Bam-mediated OMP insertion. By derivatizing a gold surface with a copper-chelating self-assembled monolayer, we were able to assemble a planar system containing the complete Bam complex reconstituted within a phospholipid bilayer. Structural characterization of this interfacial protein-tethered bilayer by polarized neutron reflectometry revealed distinct regions consistent with known high-resolution models of the Bam complex. Additionally, by monitoring changes of mass associated with OMP insertion by quartz crystal microbalance with dissipation monitoring, we were able to demonstrate the functionality of this system by inserting two diverse OMPs within the membrane, pertactin, and OmpT. This platform has promising application in investigating the mechanism of Bam-mediated OMP insertion, in addition to OMP function and activity within a phospholipid bilayer environment.


Assuntos
Proteínas de Escherichia coli , Proteínas da Membrana Bacteriana Externa , Escherichia coli , Dobramento de Proteína
3.
Sci Rep ; 9(1): 17350, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31758042

RESUMO

The polymeric mucin MUC5B provides the structural and functional framework of respiratory mucus, conferring both viscoelastic and antimicrobial properties onto this vital protective barrier. Whilst it is established that MUC5B forms disulfide-linked linear polymers, how this relates to their packaging in secretory granules, and their molecular form in mucus remain to be fully elucidated. Moreover, the role of the central heavily O-glycosylated mucin domains in MUC5B conformation is incompletely described. Here we have completed a detailed structural analysis on native MUC5B polymers purified from saliva and subsequently investigated how MUC5B conformation is affected by changes in calcium concentration and pH, factors important for mucin intragranular packaging and post-secretory expansion. The results identify that MUC5B has a beaded structure repeating along the polymer axis and suggest that these repeating motifs arise from distinct glycosylation patterns. Moreover, we demonstrate that the conformation of these highly entangled linear polymers is sensitive to calcium concentration and changes in pH. In the presence of calcium (Ca2+, 10 mM) at pH 5.0, MUC5B adopted a compact conformation which was lost either upon removal of calcium with EGTA, or by increasing the pH to 7.4. These results suggest a pathway of mucin collapse to enable intracellular packaging and mechanisms driving mucin expansion following secretion. They also point to the importance of the tight control of calcium and pH during different stages of mucin biosynthesis and secretion, and in the generation of correct mucus barrier properties.


Assuntos
Cálcio/farmacologia , Mucina-5B/química , Mucina-5B/metabolismo , Multimerização Proteica , Cromatografia em Gel , Relação Dose-Resposta a Droga , Difusão Dinâmica da Luz/métodos , Humanos , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Transmissão , Domínios Proteicos/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacos
4.
Nat Microbiol ; 4(10): 1692-1705, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31235958

RESUMO

The Mla pathway is believed to be involved in maintaining the asymmetrical Gram-negative outer membrane via retrograde phospholipid transport. The pathway is composed of three components: the outer membrane MlaA-OmpC/F complex, a soluble periplasmic protein, MlaC, and the inner membrane ATPase, MlaFEDB complex. Here, we solve the crystal structure of MlaC in its phospholipid-free closed apo conformation, revealing a pivoting ß-sheet mechanism that functions to open and close the phospholipid-binding pocket. Using the apo form of MlaC, we provide evidence that the inner-membrane MlaFEDB machinery exports phospholipids to MlaC in the periplasm. Furthermore, we confirm that the phospholipid export process occurs through the MlaD component of the MlaFEDB complex and that this process is independent of ATP. Our data provide evidence of an apparatus for lipid export away from the inner membrane and suggest that the Mla pathway may have a role in anterograde phospholipid transport.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Fosfolipídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Transporte Biológico , Cristalografia por Raios X , Bactérias Gram-Negativas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Modelos Biológicos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Periplasma/metabolismo , Ligação Proteica , Conformação Proteica em Folha beta
5.
Elife ; 82019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31246174

RESUMO

In bacteria, the translocation of proteins across the cytoplasmic membrane by the Sec machinery requires the ATPase SecA. SecA binds ribosomes and recognises nascent substrate proteins, but the molecular mechanism of nascent substrate recognition is unknown. We investigated the role of the C-terminal tail (CTT) of SecA in nascent polypeptide recognition. The CTT consists of a flexible linker (FLD) and a small metal-binding domain (MBD). Phylogenetic analysis and ribosome binding experiments indicated that the MBD interacts with 70S ribosomes. Disruption of the MBD only or the entire CTT had opposing effects on ribosome binding, substrate-protein binding, ATPase activity and in vivo function, suggesting that the CTT influences the conformation of SecA. Site-specific crosslinking indicated that F399 in SecA contacts ribosomal protein uL29, and binding to nascent chains disrupts this interaction. Structural studies provided insight into the CTT-mediated conformational changes in SecA. Our results suggest a mechanism for nascent substrate protein recognition.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Translocação Bacteriana , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas SecA/química , Proteínas SecA/metabolismo , Sequência de Aminoácidos , Biocatálise , Reagentes de Ligações Cruzadas/química , Evolução Molecular , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Peptídeos/metabolismo , Filogenia , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Ribossomos/metabolismo , Especificidade por Substrato
6.
JCI Insight ; 4(8)2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30996141

RESUMO

Cystic fibrosis (CF) is characterized by increased mucus viscosity and delayed mucociliary clearance that contributes to progressive decline of lung function. Mucus in the respiratory and GI tract is excessively adhesive in the presence of airway dehydration and excess extracellular Ca2+ upon mucin release, promoting hyperviscous, densely packed mucins characteristic of CF. Therapies that target mucins directly through ionic interactions remain unexploited. Here we show that poly (acetyl, arginyl) glucosamine (PAAG), a polycationic biopolymer suitable for human use, interacts directly with mucins in a Ca2+-sensitive manner to reduce CF mucus viscoelasticity and improve its transport. Notably, PAAG induced a linear structure of purified MUC5B and altered its sedimentation profile and viscosity, indicative of proper mucin expansion. In vivo, PAAG nebulization improved mucociliary transport in CF rats with delayed mucus clearance, and cleared mucus plugging in CF ferrets. This study demonstrates the potential use of a synthetic glycopolymer PAAG as a molecular agent that could benefit patients with a broad array of mucus diseases.


Assuntos
Fibrose Cística/tratamento farmacológico , Glucosamina/análogos & derivados , Mucina-5B/metabolismo , Depuração Mucociliar/efeitos dos fármacos , Muco/efeitos dos fármacos , Polímeros/farmacologia , Animais , Fibrose Cística/genética , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Modelos Animais de Doenças , Furões , Glucosamina/farmacologia , Glucosamina/uso terapêutico , Humanos , Camundongos , Camundongos Endogâmicos CFTR , Mucina-5B/química , Muco/metabolismo , Polímeros/uso terapêutico , Estrutura Quaternária de Proteína/efeitos dos fármacos , Ratos , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/patologia , Viscosidade/efeitos dos fármacos
7.
Proc Natl Acad Sci U S A ; 115(4): 726-731, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29311327

RESUMO

Mucosal surfaces represent critical routes for entry and exit of pathogens. As such, animals have evolved strategies to combat infection at these sites, in particular the production of mucus to prevent attachment and to promote subsequent movement of the mucus/microbe away from the underlying epithelial surface. Using biochemical, biophysical, and infection studies, we have investigated the host protective properties of the skin mucus barrier of the Xenopus tropicalis tadpole. Specifically, we have characterized the major structural component of the barrier and shown that it is a mucin glycoprotein (Otogelin-like or Otogl) with similar sequence, domain organization, and structural properties to human gel-forming mucins. This mucin forms the structural basis of a surface barrier (∼6 µm thick), which is depleted through knockdown of Otogl. Crucially, Otogl knockdown leads to susceptibility to infection by the opportunistic pathogen Aeromonas hydrophila To more accurately reflect its structure, tissue localization, and function, we have renamed Otogl as Xenopus Skin Mucin, or MucXS. Our findings characterize an accessible and tractable model system to define mucus barrier function and host-microbe interactions.


Assuntos
Mucinas/metabolismo , Mucosa/metabolismo , Xenopus/metabolismo , Aeromonas/patogenicidade , Animais , Proteínas de Membrana/metabolismo , Mucinas/fisiologia , Mucosa/fisiologia , Muco/metabolismo , Muco/fisiologia , Pele/metabolismo , Xenopus/imunologia , Xenopus/fisiologia , Proteínas de Xenopus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA