Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
CBE Life Sci Educ ; 22(2): ar16, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36862803

RESUMO

Mastery of quantitative skills is increasingly critical for student success in life sciences, but few curricula adequately incorporate quantitative skills. Quantitative Biology at Community Colleges (QB@CC) is designed to address this need by building a grassroots consortium of community college faculty to 1) engage in interdisciplinary partnerships that increase participant confidence in life science, mathematics, and statistics domains; 2) generate and publish a collection of quantitative skills-focused open education resources (OER); and 3) disseminate these OER and pedagogical practices widely, in turn expanding the network. Currently in its third year, QB@CC has recruited 70 faculty into the network and created 20 modules. Modules can be accessed by interested biology and mathematics educators in high school, 2-year, and 4-year institutions. Here, we use survey responses, focus group interviews, and document analyses (principles-focused evaluation) to evaluate the progress in accomplishing these goals midway through the QB@CC program. The QB@CC network provides a model for developing and sustaining an interdisciplinary community that benefits participants and generates valuable resources for the broader community. Similar network-building programs may wish to adopt some of the effective aspects of the QB@CC network model to meet their objectives.


Assuntos
Docentes , Estudantes , Humanos , Universidades , Instituições Acadêmicas , Biologia
2.
Pac Symp Biocomput ; : 225-34, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22174278

RESUMO

We report the development of a novel high performance computing method for the identification of proteins from unknown (environmental) samples. The method uses computational optimization to provide an effective way to control the false discovery rate for environmental samples and complements de novo peptide sequencing. Furthermore, the method provides information based on the expressed protein in a microbial community, and thus complements DNA-based identification methods. Testing on blind samples demonstrates that the method provides 79-95% overlap with analogous results from searches involving only the correct genomes. We provide scaling and performance evaluations for the software that demonstrate the ability to carry out large-scale optimizations on 1258 genomes containing 4.2M proteins.


Assuntos
Microbiota , Proteômica/estatística & dados numéricos , Espectrometria de Massas em Tandem/estatística & dados numéricos , Biologia Computacional , Metodologias Computacionais , Interpretação Estatística de Dados , Funções Verossimilhança , Microbiota/genética , Proteínas/genética , Proteínas/isolamento & purificação , Proteoma/genética , Proteoma/isolamento & purificação , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA