RESUMO
MADS transcription factors are master regulators of plant reproduction and flower development. The SEPALLATA (SEP) subfamily of MADS transcription factors is required for the development of floral organs and plays roles in inflorescence architecture and development of the floral meristem. SEPALLATAs act as organizers of MADS complexes, forming both heterodimers and heterotetramers in vitro. To date, the MADS complexes characterized in angiosperm floral organ development contain at least 1 SEPALLATA protein. Whether DNA binding by SEPALLATA-containing dimeric MADS complexes is sufficient for launching floral organ identity programs, however, is not clear as only defects in floral meristem determinacy were observed in tetramerization-impaired SEPALLATA mutant proteins. Here, we used a combination of genome-wide-binding studies, high-resolution structural studies of the SEP3/AGAMOUS (AG) tetramerization domain, structure-based mutagenesis and complementation experiments in Arabidopsis (Arabidopsis thaliana) sep1 sep2 sep3 and sep1 sep2 sep3 ag-4 plants transformed with versions of SEP3 encoding tetramerization mutants. We demonstrate that while SEP3 heterodimers can bind DNA both in vitro and in vivo and recognize the majority of SEP3 wild-type-binding sites genome-wide, tetramerization is required not only for floral meristem determinacy but also for floral organ identity in the second, third, and fourth whorls.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/crescimento & desenvolvimento , Flores/genética , Flores/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Meristema/crescimento & desenvolvimento , Meristema/genética , Meristema/metabolismo , Multimerização Proteica , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Mutação/genética , Plantas Geneticamente ModificadasRESUMO
Floral homeotic MADS-box transcription factors ensure the correct morphogenesis of floral organs, which are organized in different cell layers deriving from distinct meristematic layers. How cells from these distinct layers acquire their respective identities and coordinate their growth to ensure normal floral organ morphogenesis is unresolved. Here, we studied petunia (Petunia × hybrida) petals that form a limb and tube through congenital fusion. We identified petunia mutants (periclinal chimeras) expressing the B-class MADS-box gene DEFICIENS in the petal epidermis or in the petal mesophyll, called wico and star, respectively. Strikingly, wico flowers form a strongly reduced tube while their limbs are almost normal, while star flowers form a normal tube but greatly reduced and unpigmented limbs, showing that petunia petal morphogenesis is highly modular. These mutants highlight the layer-specific roles of PhDEF during petal development. We explored the link between PhDEF and petal pigmentation, a well-characterized limb epidermal trait. The anthocyanin biosynthesis pathway was strongly downregulated in star petals, including its major regulator ANTHOCYANIN2 (AN2). We established that PhDEF directly binds to the AN2 terminator in vitro and in vivo, suggesting that PhDEF might regulate AN2 expression and therefore petal epidermis pigmentation. Altogether, we show that cell layer-specific homeotic activity in petunia petals differently impacts tube and limb development, revealing the relative importance of the different cell layers in the modular architecture of petunia petals.
Assuntos
Petunia , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Petunia/genética , Petunia/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica , Flores/fisiologia , Morfogênese/genética , Regulação da Expressão Gênica de Plantas/genéticaRESUMO
A group of MADS transcription factors (TFs) are believed to control temperature-mediated bud dormancy. These TFs, called DORMANCY-ASSOCIATED MADS-BOX (DAM), are encoded by genes similar to SHORT VEGETATIVE PHASE (SVP) from Arabidopsis. MADS proteins form transcriptional complexes whose combinatory composition defines their molecular function. However, how MADS multimeric complexes control the dormancy cycle in trees is unclear. Apple MdDAM and other dormancy-related MADS proteins form complexes with MdSVPa, which is essential for the ability of transcriptional complexes to bind to DNA. Sequential DNA-affinity purification sequencing (seq-DAP-seq) was performed to identify the genome-wide binding sites of apple MADS TF complexes. Target genes associated with the binding sites were identified by combining seq-DAP-seq data with transcriptomics datasets obtained using a glucocorticoid receptor fusion system, and RNA-seq data related to apple dormancy. We describe a gene regulatory network (GRN) formed by MdSVPa-containing complexes, which regulate the dormancy cycle in response to environmental cues and hormonal signaling pathways. Additionally, novel molecular evidence regarding the evolutionary functional segregation between DAM and SVP proteins in the Rosaceae is presented. MdSVPa sequentially forms complexes with the MADS TFs that predominate at each dormancy phase, altering its DNA-binding specificity and, therefore, the transcriptional regulation of its target genes.
Assuntos
Arabidopsis , Malus , Arabidopsis/genética , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
The MADS transcription factors (TF) are an ancient eukaryotic protein family. In plants, the family is divided into two main lineages. Here, we demonstrate that DNA binding in both lineages absolutely requires a short amino acid sequence C-terminal to the MADS domain (M domain) called the Intervening domain (I domain) that was previously defined only in type II lineage MADS. Structural elucidation of the MI domains from the floral regulator, SEPALLATA3 (SEP3), shows a conserved fold with the I domain acting to stabilise the M domain. Using the floral organ identity MADS TFs, SEP3, APETALA1 (AP1) and AGAMOUS (AG), domain swapping demonstrate that the I domain alters genome-wide DNA-binding specificity and dimerisation specificity. Introducing AG carrying the I domain of AP1 in the Arabidopsis ap1 mutant resulted in strong complementation and restoration of first and second whorl organs. Taken together, these data demonstrate that the I domain acts as an integral part of the DNA-binding domain and significantly contributes to the functional identity of the MADS TF.
Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Homeodomínio/química , Fatores de Transcrição/química , Proteína AGAMOUS de Arabidopsis/química , Proteína AGAMOUS de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Domínio MADS/metabolismo , Fenótipo , Domínios e Motivos de Interação entre Proteínas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
The MADS transcription factors (TF), SEPALLATA3 (SEP3) and AGAMOUS (AG) are required for floral organ identity and floral meristem determinacy. While dimerization is obligatory for DNA binding, SEP3 and SEP3-AG also form tetrameric complexes. How homo and hetero-dimerization and tetramerization of MADS TFs affect genome-wide DNA-binding and gene regulation is not known. Using sequential DNA affinity purification sequencing (seq-DAP-seq), we determined genome-wide binding of SEP3 homomeric and SEP3-AG heteromeric complexes, including SEP3Δtet-AG, a complex with a SEP3 splice variant, SEP3Δtet, which is largely dimeric and SEP3-AG tetramer. SEP3 and SEP3-AG share numerous bound regions, however each complex bound unique sites, demonstrating that protein identity plays a role in DNA-binding. SEP3-AG and SEP3Δtet-AG share a similar genome-wide binding pattern; however the tetrameric form could access new sites and demonstrated a global increase in DNA-binding affinity. Tetramerization exhibited significant cooperative binding with preferential distances between two sites, allowing efficient binding to regions that are poorly recognized by dimeric SEP3Δtet-AG. By intersecting seq-DAP-seq with ChIP-seq and expression data, we identified unique target genes bound either in SEP3-AG seq-DAP-seq or in SEP3/AG ChIP-seq. Seq-DAP-seq is a versatile genome-wide technique and complements in vivo methods to identify putative direct regulatory targets.
Assuntos
Proteína AGAMOUS de Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Homeodomínio/metabolismo , Análise de Sequência de DNA/métodos , Fatores de Transcrição/metabolismo , Proteína AGAMOUS de Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sítios de Ligação , Proteínas de Transporte/genética , DNA de Plantas/genética , DNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Homeodomínio/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Multimerização Proteica , Fatores de Transcrição/genéticaRESUMO
The Evening Complex (EC), composed of the DNA binding protein LUX ARRHYTHMO (LUX) and two additional proteins EARLY FLOWERING 3 (ELF3) and ELF4, is a transcriptional repressor complex and a core component of the plant circadian clock. In addition to maintaining oscillations in clock gene expression, the EC also participates in temperature and light entrainment, acting as an important environmental sensor and conveying this information to growth and developmental pathways. However, the molecular basis for EC DNA binding specificity and temperature-dependent activity were not known. Here, we solved the structure of the DNA binding domain of LUX in complex with DNA. Residues critical for high-affinity binding and direct base readout were determined and tested via site-directed mutagenesis in vitro and in vivo. Using extensive in vitro DNA binding assays of LUX alone and in complex with ELF3 and ELF4, we demonstrate that, while LUX alone binds DNA with high affinity, the LUX-ELF3 complex is a relatively poor binder of DNA. ELF4 restores binding to the complex. In vitro, the full EC is able to act as a direct thermosensor, with stronger DNA binding at 4 °C and weaker binding at 27 °C. In addition, an excess of ELF4 is able to restore EC binding even at 27 °C. Taken together, these data suggest that ELF4 is a key modulator of thermosensitive EC activity.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Ritmo Circadiano , DNA de Plantas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Proteínas de Arabidopsis/genética , DNA de Plantas/genética , Proteínas de Ligação a DNA/genéticaRESUMO
MADS transcription factors (TFs) are DNA binding proteins found in almost all eukaryotes that play essential roles in diverse biological processes. While present in animals and fungi as a small TF family, the family has dramatically expanded in plants over the course of evolution, with the model flowering plant, Arabidopsis thaliana, possessing over 100 type I and type II MADS TFs. All MADS TFs contain a core and highly conserved DNA binding domain called the MADS or M domain. Plant MADS TFs have diversified this domain with plant-specific auxiliary domains. Plant type I MADS TFs have a highly diverse and largely unstructured Carboxy-terminal (C domain), whereas type II MADS have added oligomerization domains, called Intervening (I domain) and Keratin-like (K domain), in addition to the C domain. In this mini review, we describe the overall structure of the type II "MIKC" type MADS TFs in plants, with a focus on the K domain, a critical oligomerization module. We summarize the determining factors for oligomerization and provide mechanistic insights on how secondary structural elements are required for oligomerization capability and specificity. Using MADS TFs that are involved in flower organ specification as an example, we provide case studies and homology modeling of MADS TFs complex formation. Finally, we highlight outstanding questions in the field.
RESUMO
Unlike most transcription factors (TF), pioneer TFs have a specialized role in binding closed regions of chromatin and initiating the subsequent opening of these regions. Thus, pioneer TFs are key factors in gene regulation with critical roles in developmental transitions, including organ biogenesis, tissue development, and cellular differentiation. These developmental events involve some major reprogramming of gene expression patterns, specifically the opening and closing of distinct chromatin regions. Here, we discuss how pioneer TFs are identified using biochemical and genome-wide techniques. What is known about pioneer TFs from animals and plants is reviewed, with a focus on the strategies used by pioneer factors in different organisms. Finally, the different molecular mechanisms pioneer factors used are discussed, highlighting the roles that tertiary and quaternary structures play in nucleosome-compatible DNA-binding.
Assuntos
Cromatina/química , Células Eucarióticas/metabolismo , Genoma , Histonas/genética , Fatores de Transcrição/genética , Animais , Diferenciação Celular , Cromatina/metabolismo , Células Eucarióticas/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Humanos , Conformação Molecular , Plantas/genética , Plantas/metabolismo , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo , Transcrição GênicaAssuntos
Proteínas de Domínio MADS/química , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Motivos de Aminoácidos , Flores/química , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Família Multigênica , Proteínas de Plantas/genética , Plantas/química , Plantas/genética , Ligação Proteica , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
The MADS transcription factors (TF) constitute an ancient family of TF found in all eukaryotes that bind DNA as obligate dimers. Plants have dramatically expanded the functional diversity of the MADS family during evolution by adding protein-protein interaction domains to the core DNA-binding domain, allowing the formation of heterotetrameric complexes. Tetramerization of plant MADS TFs is believed to play a central role in the evolution of higher plants by acting as one of the main determinants of flower formation and floral organ specification. The MADS TF, SEPALLATA3 (SEP3), functions as a central protein-protein interaction hub, driving tetramerization with other MADS TFs. Here, we use a SEP3 splice variant, SEP3Δtet, which has dramatically abrogated tetramerization capacity to decouple SEP3 tetramerization and DNA-binding activities. We unexpectedly demonstrate that SEP3 heterotetramer formation is required for correct termination of the floral meristem, but plays a lesser role in floral organogenesis. The heterotetramer formed by SEP3 and the MADS protein, AGAMOUS, is necessary to activate two target genes, KNUCKLES and CRABSCLAW, which are required for meristem determinacy. These studies reveal unique and highly specific roles of tetramerization in flower development and suggest tetramerization may be required to activate only a subset of target genes in closed chromatin regions.
Assuntos
Proteína AGAMOUS de Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Flores/fisiologia , Proteínas de Homeodomínio/metabolismo , Meristema/fisiologia , Fatores de Transcrição/metabolismo , Proteína AGAMOUS de Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Mutação , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Multimerização Proteica , Fatores de Transcrição/genéticaRESUMO
Circular RNAs (circRNAs) are a diverse and abundant class of hyper-stable, non-canonical RNAs that arise through a form of alternative splicing (AS) called back-splicing. These single-stranded, covalently-closed circRNA molecules have been identified in all eukaryotic kingdoms of life1, yet their functions have remained elusive. Here, we report that circRNAs can be used as bona fide biomarkers of functional, exon-skipped AS variants in Arabidopsis, including in the homeotic MADS-box transcription factor family. Furthermore, we demonstrate that circRNAs derived from exon 6 of the SEPALLATA3 (SEP3) gene increase abundance of the cognate exon-skipped AS variant (SEP3.3 which lacks exon 6), in turn driving floral homeotic phenotypes. Toward demonstrating the underlying mechanism, we show that the SEP3 exon 6 circRNA can bind strongly to its cognate DNA locus, forming an RNA:DNA hybrid, or R-loop, whereas the linear RNA equivalent bound significantly more weakly to DNA. R-loop formation results in transcriptional pausing, which has been shown to coincide with splicing factor recruitment and AS2-4. This report presents a novel mechanistic insight for how at least a subset of circRNAs probably contribute to increased splicing efficiency of their cognate exon-skipped messenger RNA and provides the first evidence of an organismal-level phenotype mediated by circRNA manipulation.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , DNA Circular/genética , DNA de Plantas/genética , Proteínas de Homeodomínio/genética , Splicing de RNA/genética , RNA Mensageiro/genética , Fatores de Transcrição/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , DNA Circular/metabolismo , DNA de Plantas/metabolismo , Proteínas de Homeodomínio/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Understanding the evolutionary leap from non-flowering (gymnosperms) to flowering (angiosperms) plants and the origin and vast diversification of the floral form has been one of the focuses of plant evolutionary developmental biology. The evolving diversity and increasing complexity of organisms is often due to relatively small changes in genes that direct development. These "developmental control genes" and the transcription factors (TFs) they encode, are at the origin of most morphological changes. TFs such as LEAFY (LFY) and the MADS-domain TFs act as central regulators in key developmental processes of plant reproduction including the floral transition in angiosperms and the specification of the male and female organs in both gymnosperms and angiosperms. In addition to advances in genome wide profiling and forward and reverse genetic screening, structural techniques are becoming important tools in unraveling TF function by providing atomic and molecular level information that was lacking in purely genetic approaches. Here, we summarize previous structural work and present additional biophysical and biochemical studies of the key master regulators of plant reproduction - LEAFY and the MADS-domain TFs SEPALLATA3 and AGAMOUS. We discuss the impact of structural biology on our understanding of the complex evolutionary process leading to the development of the bisexual flower.
RESUMO
The function of selenium-binding protein 1 (SBP1), present in almost all organisms, has not yet been established. In mammals, SBP1 is known to bind the essential element selenium but the binding site has not been identified. In addition, the SBP family has numerous potential metal-binding sites that may play a role in detoxification pathways in plants. In Arabidopsis thaliana, AtSBP1 over-expression increases tolerance to two toxic compounds for plants, selenium and cadmium, often found as soil pollutants. For a better understanding of AtSBP1 function in detoxification mechanisms, we investigated the chelating properties of the protein toward different ligands with a focus on selenium using biochemical and biophysical techniques. Thermal shift assays together with inductively coupled plasma mass spectrometry revealed that AtSBP1 binds selenium after incubation with selenite (SeO3(2-)) with a ligand to protein molar ratio of 1:1. Isothermal titration calorimetry confirmed the 1:1 stoichiometry and revealed an unexpectedly large value of binding enthalpy suggesting a covalent bond between selenium and AtSBP1. Titration of reduced Cys residues and comparative mass spectrometry on AtSBP1 and the purified selenium-AtSBP1 complex identified Cys(21) and Cys(22) as being responsible for the binding of one selenium. These results were validated by site-directed mutagenesis. Selenium K-edge x-ray absorption near edge spectroscopy performed on the selenium-AtSBP1 complex demonstrated that AtSBP1 reduced SeO3(2-) to form a R-S-Se(II)-S-R-type complex. The capacity of AtSBP1 to bind different metals and selenium is discussed with respect to the potential function of AtSBP1 in detoxification mechanisms and selenium metabolism.
Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/efeitos dos fármacos , Proteínas de Transporte/química , Regulação da Expressão Gênica de Plantas , Proteínas de Ligação a Selênio/química , Selênio/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cisteína/química , Humanos , Ligantes , Conformação Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , TermodinâmicaRESUMO
Uranium is a natural element which is mainly redistributed in the environment due to human activity, including accidents and spillages. Plants may be useful in cleaning up after incidents, although little is yet known about the relationship between metal speciation and plant response. Here, J-Chess modeling was used to predict U speciation and exposure conditions affecting U bioavailability for plants. The model was confirmed by exposing Arabidopsis thaliana plants to U under hydroponic conditions. The early root response was characterized using complete Arabidopsis transcriptome microarrays (CATMA). Expression of 111 genes was modified at the three timepoints studied. The associated biological processes were further examined by real-time quantitative RT-PCR. Annotation revealed that oxidative stress, cell wall and hormone biosynthesis, and signaling pathways (including phosphate signaling) were affected by U exposure. The main actors in iron uptake and signaling (IRT1, FRO2, AHA2, AHA7 and FIT1) were strongly down-regulated upon exposure to uranyl. A network calculated using IRT1, FRO2 and FIT1 as bait revealed a set of genes whose expression levels change under U stress. Hypotheses are presented to explain how U perturbs the iron uptake and signaling response. These results give preliminary insights into the pathways affected by uranyl uptake, which will be of interest for engineering plants to help clean areas contaminated with U.
Assuntos
Arabidopsis/metabolismo , Ferro/metabolismo , Raízes de Plantas/metabolismo , Urânio/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Raízes de Plantas/genética , Transdução de Sinais , Urânio/análiseRESUMO
Plant hormones, in addition to regulating growth and development, are involved in biotic and abiotic stress responses. To investigate whether a hormone signalling pathway plays a role in the plant response to the heavy metal cadmium (Cd), gene expression data in response to eight hormone treatments were retrieved from the Genevestigator Arabidopsis thaliana database and compared with published microarray analysis performed on plants challenged with Cd. Across more than 3000 Cd-regulated genes, statistical approaches and cluster analyses highlighted that gene expression in response to Cd and brassinosteroids (BR) showed a significant similarity. Of note, over 75% of the genes showing consistent (e.g. opposite) regulation upon BR and Brz (BR biosynthesis inhibitor) exposure exhibited a BR-like response upon Cd exposure. This phenomenon was confirmed by qPCR analysis of the expression level of 10 BR-regulated genes in roots of Cd-treated wild-type (WT) plants. Although no change in BR content was observed in response to Cd in our experimental conditions, adding epibrassinolide (eBL, a synthetic brassinosteroid) to WT plants significantly enhanced Cd-induced root growth inhibition, highlighting a synergistic response between eBL and the metal. This effect was specific to this hormone treatment. On the other hand, dwarf1 seedlings, showing a reduced BR level, exhibited decreased root growth inhibition in response to Cd compared with WT, reversed by the addition of eBL. Similar results were obtained on Brz-treated WT plants. These results argue in favour of an interaction between Cd and BR signalling that modulates plant sensitivity, and opens new perspectives to understand the plant response to Cd.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Cádmio/farmacologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Biologia Computacional , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismoRESUMO
Monitoring molecular dynamics of an organism upon stress is probably the best approach to decipher physiological mechanisms involved in the stress response. Quantitative analysis of proteins and metabolites is able to provide accurate information about molecular changes allowing the establishment of a range of more or less specific mechanisms, leading to the identification of major players in the considered pathways. Such tools have been successfully used to analyze the plant response to cadmium (Cd), a major pollutant capable of causing severe health issues as it accumulates in the food chain. We present a summary of proteomics and metabolomics works that contributed to a better understanding of the molecular aspects involved in the plant response to Cd. This work allowed us to provide a finer picture of general signaling, regulatory and metabolic pathways that appeared to be affected upon Cd stress. In particular, we conclude on the advantage of employing different approaches of global proteome- and metabolome-wide techniques, combined with more targeted analysis to answer molecular questions and unravel biological networks. Finally, we propose possible directions and methodologies for future prospectives in this field, as many aspects of the plant-Cd interaction remain to be discovered.
Assuntos
Cádmio/toxicidade , Metabolômica/métodos , Plantas/efeitos dos fármacos , Plantas/metabolismo , Proteômica/métodos , Poluentes Ambientais/toxicidade , Redes e Vias Metabólicas/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Modelos Biológicos , Proteínas de Plantas/metabolismo , Proteoma/metabolismoRESUMO
Selenium-Binding Protein1 (SBP1) gene expression was studied in Arabidopsis (Arabidopsis thaliana) seedlings challenged with several stresses, including cadmium (Cd), selenium {selenate [Se(VI)] and selenite [Se(IV)]}, copper (Cu), zinc (Zn), and hydrogen peroxide (H(2)O(2)) using transgenic lines expressing the luciferase (LUC) reporter gene under the control of the SBP1 promoter. In roots and shoots of SBP1LUC lines, LUC activity increased in response to Cd, Se(VI), Cu, and H(2)O(2) but not in response to Se(IV) or Zn. The pattern of expression of SBP1 was similar to that of PRH43, which encodes the 5'-Adenylylphosphosulfate Reductase2, a marker for the induction of the sulfur assimilation pathway, suggesting that an enhanced sulfur demand triggers SBP1 up-regulation. Correlated to these results, SBP1 promoter showed enhanced activity in response to sulfur starvation. The sulfur starvation induction of SBP1 was abolished by feeding the plants with glutathione (GSH) and was enhanced when seedlings were treated simultaneously with buthionine sulfoxide, which inhibits GSH synthesis, indicating that GSH level participates in the regulation of SBP1 expression. Changes in total GSH level were observed in seedlings challenged with Cd, Se(VI), and H(2)O(2). Accordingly, cad2-1 seedlings, affected in GSH synthesis, were more sensitive than wild-type plants to these three stresses. Moreover, wild-type and cad2-1 seedlings overexpressing SBP1 showed a significant enhanced tolerance to Se(VI) and H(2)O(2) in addition to the previously described resistance to Cd, highlighting that SBP1 expression decreases sensitivity to stress requiring GSH for tolerance. These results are discussed with regard to the potential regulation and function of SBP1 in plants.
Assuntos
Adaptação Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Glutationa/metabolismo , Estresse Fisiológico , Enxofre/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Peróxido de Hidrogênio/farmacologia , Luciferases/metabolismo , Metais Pesados/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Regiões Promotoras Genéticas/genética , Plântula/efeitos dos fármacos , Plântula/metabolismo , Proteínas de Ligação a Selênio , Estresse Fisiológico/efeitos dos fármacosRESUMO
In Arabidopsis (Arabidopsis thaliana), the putative selenium-binding protein (SBP) gene family is composed of three members (SBP1-SBP3). Reverse transcription-polymerase chain reaction analyses showed that SBP1 expression was ubiquitous. SBP2 was expressed at a lower level in flowers and roots, whereas SBP3 transcripts were only detected in young seedling tissues. In cadmium (Cd)-treated seedlings, SBP1 level of expression was rapidly increased in roots. In shoots, SBP1 transcripts accumulated later and for higher Cd doses. SBP2 and SBP3 expression showed delayed or no responsiveness to Cd. In addition, luciferase (LUC) activity recorded on Arabidopsis lines expressing the LUC gene under the control of the SBP1 promoter further showed dynamic regulation of SBP1 expression during development and in response to Cd stress. Western-blot analysis using polyclonal antibodies raised against SBP1 showed that SBP1 protein accumulated in Cd-exposed tissues in correlation with SBP1 transcript amount. The sbp1 null mutant displayed no visible phenotype under normal and stress conditions that was explained by the up-regulation of SBP2 expression. SBP1 overexpression enhanced Cd accumulation in roots and reduced sensitivity to Cd in wild type and, more significantly, in Cd-hypersensitive cad mutants that lack phytochelatins. Similarly, in Saccharomyces cerevisiae, SBP1 expression led to increased Cd tolerance of the Cd-hypersensitive ycf1 mutant. In vitro experiments showed that SBP1 has the ability to bind Cd. These data highlight the importance of maintaining the adequate SBP protein level under healthy and stress conditions and suggest that, during Cd stress, SBP1 accumulation efficiently helps to detoxify Cd potentially through direct binding.
Assuntos
Arabidopsis/genética , Cádmio/metabolismo , Proteínas de Ligação a Selênio/genética , Arabidopsis/fisiologia , Expressão Gênica , Genes Reporter , Inativação Metabólica/genética , Luciferases/genética , Luciferases/metabolismo , Família Multigênica , Mutação , Fenótipo , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Plântula/metabolismo , Proteínas de Ligação a Selênio/metabolismoRESUMO
To better understand plant vacuolar functions and identify new transporters present on the tonoplast, a proteomic work was initiated on Arabidopsis thaliana. A procedure was developed to prepare highly purified vacuoles from protoplasts isolated from Arabidopsis cell cultures, and a proteomics approach was designed to identify the protein components present in both the membrane and soluble fractions of the vacuoles. This procedure allowed the identification of 650 proteins, 2/3 of which copurify with the hydrophobic membrane fraction and 1/3 with the soluble fraction. With regard to function, only 20% of the proteins identified were previously known to be associated with vacuolar activities.
RESUMO
To better understand the mechanisms governing cellular traffic, storage of various metabolites, and their ultimate degradation, Arabidopsis thaliana vacuole proteomes were established. To this aim, a procedure was developed to prepare highly purified vacuoles from protoplasts isolated from Arabidopsis cell cultures using Ficoll density gradients. Based on the specific activity of the vacuolar marker alpha-mannosidase, the enrichment factor of the vacuoles was estimated at approximately 42-fold with an average yield of 2.1%. Absence of significant contamination by other cellular compartments was validated by Western blot using antibodies raised against specific markers of chloroplasts, mitochondria, plasma membrane, and endoplasmic reticulum. Based on these results, vacuole preparations showed the necessary degree of purity for proteomics study. Therefore, a proteomics approach was developed to identify the protein components present in both the membrane and soluble fractions of the Arabidopsis cell vacuoles. This approach includes the following: (i) a mild oxidation step leading to the transformation of cysteine residues into cysteic acid and methionine to methionine sulfoxide, (ii) an in-solution proteolytic digestion of very hydrophobic proteins, and (iii) a prefractionation of proteins by short migration by SDS-PAGE followed by analysis by liquid chromatography coupled to tandem mass spectrometry. This procedure allowed the identification of more than 650 proteins, two-thirds of which copurify with the membrane hydrophobic fraction and one-third of which copurifies with the soluble fraction. Among the 416 proteins identified from the membrane fraction, 195 were considered integral membrane proteins based on the presence of one or more predicted transmembrane domains, and 110 transporters and related proteins were identified (91 putative transporters and 19 proteins related to the V-ATPase pump). With regard to function, about 20% of the proteins identified were known previously to be associated with vacuolar activities. The proteins identified are involved in ion and metabolite transport (26%), stress response (9%), signal transduction (7%), and metabolism (6%) or have been described to be involved in typical vacuolar activities, such as protein and sugar hydrolysis. The subcellular localization of several putative vacuolar proteins was confirmed by transient expression of green fluorescent protein fusion constructs.