Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38617208

RESUMO

Compromised vascular supply and insufficient neovascularization impede bone repair, increasing risk of non-union. Cyr61, Cysteine-rich angiogenic inducer of 61kD (also known as CCN1), is a matricellular growth factor that is regulated by mechanical cues during fracture repair. Here, we map the distribution of endogenous Cyr61 during bone repair and evaluate the effects of recombinant Cyr61 delivery on vascularized bone regeneration. In vitro, Cyr61 treatment did not alter chondrogenesis or osteogenic gene expression, but significantly enhanced angiogenesis. In a mouse femoral fracture model, Cyr61 delivery did not alter cartilage or bone formation, but accelerated neovascularization during fracture repair. Early initiation of ambulatory mechanical loading disrupted Cyr61-induced neovascularization. Together, these data indicate that Cyr61 delivery can enhance angiogenesis during bone repair, particularly for fractures with stable fixation, and may have therapeutic potential for fractures with limited blood vessel supply.

2.
Lab Chip ; 22(9): 1764-1778, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35244110

RESUMO

Sensing devices have shown tremendous potential for monitoring state-of-the-art organ chip devices. However, challenges like miniaturization while maintaining higher performance, longer operating times for continuous monitoring, and fabrication complexities limit their use. Herein simple, low-cost, and solution-processible inkjet dispenser printing of embedded electrochemical sensors for dissolved oxygen (DO) and reactive oxygen species (ROS) is proposed for monitoring developmental (initially normoxia) and induced hypoxia in a custom-developed gut bilayer microfluidic chip platform for 6 days. The DO sensors showed a high sensitivity of 31.1 nA L mg-1 with a limit of detection (LOD) of 0.67 mg L-1 within the 0-9 mg L-1 range, whereas the ROS sensor had a higher sensitivity of 1.44 nA µm-1 with a limit of detection of 1.7 µm within the 0-300 µm range. The dynamics of the barrier tight junctions are quantified with the help of an in-house developed trans-epithelial-endothelial electrical impedance (TEEI) sensor. Immunofluorescence staining was used to evaluate the expressions of HIF-1α and tight junction protein (TJP) ZO-1. This platform can also be used to enhance bioavailability assays, drug transport studies under an oxygen-controlled environment, and even other barrier organ models, as well as for various applications like toxicity testing, disease modeling and drug screening.


Assuntos
Hipóxia , Microfluídica , Avaliação Pré-Clínica de Medicamentos , Humanos , Oxigênio , Espécies Reativas de Oxigênio
3.
Polymers (Basel) ; 13(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34503056

RESUMO

The cellular microenvironment is influenced explicitly by the extracellular matrix (ECM), the main tissue support biomaterial, as a decisive factor for tissue growth patterns. The recent emergence of hepatic microphysiological systems (MPS) provide the basic physiological emulation of the human liver for drug screening. However, engineering microfluidic devices with standardized surface coatings of ECM may improve MPS-based organ-specific emulation for improved drug screening. The influence of surface coatings of different ECM types on tissue development needs to be optimized. Additionally, an intensity-based image processing tool and transepithelial electrical resistance (TEER) sensor may assist in the analysis of tissue formation capacity under the influence of different ECM types. The current study highlights the role of ECM coatings for improved tissue formation, implying the additional role of image processing and TEER sensors. We studied hepatic tissue formation under the influence of multiple concentrations of Matrigel, collagen, fibronectin, and poly-L-lysine. Based on experimental data, a mathematical model was developed, and ECM concentrations were validated for better tissue development. TEER sensor and image processing data were used to evaluate the development of a hepatic MPS for human liver physiology modeling. Image analysis data for tissue formation was further strengthened by metabolic quantification of albumin, urea, and cytochrome P450. Standardized ECM type for MPS may improve clinical relevance for modeling hepatic tissue microenvironment, and image processing possibly enhance the tissue analysis of the MPS.

4.
Sci Adv ; 7(11)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33712463

RESUMO

Here, we present an approach to model and adapt the mechanical regulation of morphogenesis that uses contractile cells as sculptors of engineered tissue anisotropy in vitro. Our method uses heterobifunctional cross-linkers to create mechanical boundary constraints that guide surface-directed sculpting of cell-laden extracellular matrix hydrogel constructs. Using this approach, we engineered linearly aligned tissues with structural and mechanical anisotropy. A multiscale in silico model of the sculpting process was developed to reveal that cell contractility increases as a function of principal stress polarization in anisotropic tissues. We also show that the anisotropic biophysical microenvironment of linearly aligned tissues potentiates soluble factor-mediated tenogenic and myogenic differentiation of mesenchymal stem cells. The application of our method is demonstrated by (i) skeletal muscle arrays to screen therapeutic modulators of acute oxidative injury and (ii) a 3D microphysiological model of lung cancer cachexia to study inflammatory and oxidative muscle injury induced by tumor-derived signals.


Assuntos
Células-Tronco Mesenquimais , Engenharia Tecidual , Anisotropia , Diferenciação Celular , Matriz Extracelular/química , Hidrogéis/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química
5.
Nano Converg ; 8(1): 3, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33528697

RESUMO

Hepatic fibrosis is a foreshadowing of future adverse events like liver cirrhosis, liver failure, and cancer. Hepatic stellate cell activation is the main event of liver fibrosis, which results in excessive extracellular matrix deposition and hepatic parenchyma's disintegration. Several biochemical and molecular assays have been introduced for in vitro study of the hepatic fibrosis progression. However, they do not forecast real-time events happening to the in vitro models. Trans-epithelial electrical resistance (TEER) is used in cell culture science to measure cell monolayer barrier integrity. Herein, we explored TEER measurement's utility for monitoring fibrosis development in a dynamic cell culture microphysiological system. Immortal HepG2 cells and fibroblasts were co-cultured, and transforming growth factor ß1 (TGF-ß1) was used as a fibrosis stimulus to create a liver fibrosis-on-chip model. A glass chip-based embedded TEER and reactive oxygen species (ROS) sensors were employed to gauge the effect of TGF-ß1 within the microphysiological system, which promotes a positive feedback response in fibrosis development. Furthermore, albumin, Urea, CYP450 measurements, and immunofluorescent microscopy were performed to correlate the following data with embedded sensors responses. We found that chip embedded electrochemical sensors could be used as a potential substitute for conventional end-point assays for studying fibrosis in microphysiological systems.

6.
Small ; 17(15): e2004889, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33150735

RESUMO

Hemostasis is an innate protective mechanism that plays a central role in maintaining the homeostasis of the vascular system during vascular injury. Studying this essential physiological process is often challenged by the difficulty of modeling and probing the complex dynamics of hemostatic responses in the native context of human blood vessels. To address this major challenge, this paper describes a microengineering approach for in vitro modeling of hemostasis. This microphysiological model replicates the living endothelium, multilayered microarchitecture, and procoagulant activity of human blood vessels, and is also equipped with a microneedle that is actuated with spatial precision to simulate penetrating vascular injuries. The system recapitulates key features of the hemostatic response to acute vascular injury as observed in vivo, including i) thrombin-driven accumulation of platelets and fibrin, ii) formation of a platelet- and fibrin-rich hemostatic plug that halts blood loss, and iii) matrix deformation driven by platelet contraction for wound closure. Moreover, the potential use of this model for drug testing applications is demonstrated by evaluating the effects of anticoagulants and antiplatelet agents that are in current clinical use. The vascular injury-on-a-chip may serve as an enabling platform for preclinical investigation of hematological disorders and emerging therapeutic approaches against them.


Assuntos
Trombose , Lesões do Sistema Vascular , Fibrina , Hemostasia , Humanos , Dispositivos Lab-On-A-Chip
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 226: 117610, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31606675

RESUMO

Vaspin is a protein present in human serum that can cause type-2 diabetes, obesity, and other cardiovascular diseases. We report fluorescent upconverting nanoparticles (UCNPs)-based lateral flow biosensor for ultrasensitive detection of Vaspin. A pair (primary and secondary) of cognate aptamers was used that has duo binding with Vaspin. UCNPs with a diameter of around 100 nm were used as a tag to label a detection probe (secondary aptamer). A primary aptamer (capture probe) was immobilized on the test zone. Sandwich type hybridization reactions among the conjugate probe, target Vaspin, and primary aptamer were performed on the lateral flow biosensor. In the presence of target Vaspin, UCNPs were captured on the test zone of the biosensor and the fluorescent intensity of the captured UCNPs was measured through a colorimetric app under NIR. Fluorescence intensity indicates the quantity of Vaspin present in the sample. A range of Vaspin concentration across 0.1-55 ng ml-1 with a Limit of detection (LOD) 39 pg ml-1 was tested through this UCNPs based LFSA with high sensitivity, reproducibility and repeatability, whereas it's actual range in human blood is from 0.1 to 7 ng ml-1. Therefore, this research provides a well-suited lateral flow strip with an ultrasensitive and low-cost approach for the early diagnosis of type-2 diabetes and this could be applied to any targets with a duo of aptamers generated.


Assuntos
Técnicas Biossensoriais/métodos , Análise Química do Sangue/métodos , Corantes Fluorescentes , Nanopartículas/química , Serpinas/análise , Aptâmeros de Nucleotídeos/análise , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Diagnóstico Precoce , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacocinética , Humanos , Limite de Detecção , Ligação Proteica , Reprodutibilidade dos Testes , Serpinas/metabolismo
8.
APL Bioeng ; 3(4): 040401, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31673671
9.
JCI Insight ; 4(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31672937

RESUMO

Islet transplantation is an effective therapy for achieving and maintaining normoglycemia in patients with type 1 diabetes mellitus. However, the supply of transplantable human islets is limited. Upon removal from the pancreas, islets rapidly disintegrate and lose function, resulting in a short interval for studies of islet biology and pretransplantation assessment. Here, we developed a biomimetic platform that can sustain human islet physiology for a prolonged period ex vivo. Our approach involved the creation of a multichannel perifusion system to monitor dynamic insulin secretion and intracellular calcium flux simultaneously, enabling the systematic evaluation of glucose-stimulated insulin secretion under multiple conditions. Using this tool, we developed a nanofibrillar cellulose hydrogel-based islet-preserving platform (iPreP) that can preserve islet viability, morphology, and function for nearly 12 weeks ex vivo, and with the ability to ameliorate glucose levels upon transplantation into diabetic hosts. Our platform has potential applications in the prolonged maintenance of human islets, providing an expanded time window for pretransplantation assessment and islet studies.


Assuntos
Celulose/química , Hidrogéis/química , Ilhotas Pancreáticas , Nanofibras/química , Preservação Biológica/métodos , Adolescente , Adulto , Feminino , Humanos , Técnicas In Vitro , Transplante das Ilhotas Pancreáticas/métodos , Masculino , Pessoa de Meia-Idade
10.
Nat Med ; 25(8): 1310-1318, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31384041

RESUMO

Here we present a miniaturized analog of a blinking human eye to reverse engineer the complexity of the interface between the ocular system and the external environment. Our model comprises human cells and provides unique capabilities to replicate multiscale structural organization, biological phenotypes and dynamically regulated environmental homeostasis of the human ocular surface. Using this biomimetic system, we discovered new biological effects of blink-induced mechanical forces. Furthermore, we developed a specialized in vitro model of evaporative dry-eye disease for high-content drug screening. This work advances our ability to emulate how human physiological systems interface with the external world, and may contribute to the future development of novel screening platforms for biopharmaceutical and environmental applications.


Assuntos
Piscadela/fisiologia , Síndromes do Olho Seco/etiologia , Engenharia Tecidual/métodos , Fenômenos Biomecânicos , Células Cultivadas , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/fisiopatologia , Glicoproteínas/uso terapêutico , Humanos , Fenótipo
11.
ACS Nano ; 13(7): 7627-7643, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31194909

RESUMO

The vasculature is an essential component of the circulatory system that plays a vital role in the development, homeostasis, and disease of various organs in the human body. The ability to emulate the architecture and transport function of blood vessels in the integrated context of their associated organs represents an important requirement for studying a wide range of physiological processes. Traditional in vitro models of the vasculature, however, largely fail to offer such capabilities. Here we combine microfluidic three-dimensional (3D) cell culture with the principle of vasculogenic self-assembly to engineer perfusable 3D microvascular beds in vitro. Our system is created in a micropatterned hydrogel construct housed in an elastomeric microdevice that enables coculture of primary human vascular endothelial cells and fibroblasts to achieve de novo formation, anastomosis, and controlled perfusion of 3D vascular networks. An open-top chamber design adopted in this hybrid platform also makes it possible to integrate the microengineered 3D vasculature with other cell types to recapitulate organ-specific cellular heterogeneity and structural organization of vascularized human tissues. Using these capabilities, we developed stem cell-derived microphysiological models of vascularized human adipose tissue and the blood-retinal barrier. Our approach was also leveraged to construct a 3D organotypic model of vascularized human lung adenocarcinoma as a high-content drug screening platform to simulate intravascular delivery, tumor-killing effects, and vascular toxicity of a clinical chemotherapeutic agent. Furthermore, we demonstrated the potential of our platform for applications in nanomedicine by creating microengineered models of vascular inflammation to evaluate a nanoengineered drug delivery system based on active targeting liposomal nanocarriers. These results represent a significant improvement in our ability to model the complexity of native human tissues and may provide a basis for developing predictive preclinical models for biopharmaceutical applications.


Assuntos
Adenocarcinoma de Pulmão/patologia , Técnicas de Cultura de Células , Engenharia Celular , Células Endoteliais/citologia , Fibroblastos/citologia , Técnicas Analíticas Microfluídicas , Adenocarcinoma de Pulmão/irrigação sanguínea , Humanos , Hidrogéis/química , Microcirculação
12.
ACS Appl Mater Interfaces ; 11(27): 23919-23925, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31199616

RESUMO

Diverse biological processes in the body rely on the ability of cells to exert contractile forces on their extracellular matrix (ECM). In three-dimensional (3D) cell culture, however, this intrinsic cellular property can cause unregulated contraction of ECM hydrogel scaffolds, leading to a loss of surface anchorage and the resultant structural failure of in vitro tissue constructs. Despite advances in the 3D culture technology, this issue remains a significant challenge in the development and long-term maintenance of physiological 3D in vitro models. Here, we present a simple yet highly effective and accessible solution to this problem. We leveraged a single-step surface functionalization technique based on polydopamine to drastically increase the strength of adhesion between hydrogel scaffolds and cell culture substrates. Our method is compatible with different types of ECM and polymeric surfaces and also permits prolonged shelf storage of functionalized culture substrates. The proof-of-principle of this technique was demonstrated by the stable long-term (1 month) 3D culture of human lung fibroblasts. Furthermore, we showed the robustness and advanced application of the method by constructing a dynamic cell stretching system and performing over 100 000 cycles of mechanical loading on 3D multicellular constructs for visualization and quantitative analysis of stretch-induced tissue alignment. Finally, we demonstrated the potential of our technique for the development of microphysiological in vitro models by establishing microfluidic 3D co-culture of vascular endothelial cells and fibroblasts to engineer self-assembled, perfusable 3D microvascular beds.


Assuntos
Técnicas de Cultura de Células , Células Endoteliais/metabolismo , Matriz Extracelular/química , Fibroblastos/metabolismo , Hidrogéis/química , Indóis/química , Polímeros/química , Alicerces Teciduais/química , Células Endoteliais/citologia , Fibroblastos/citologia , Humanos , Impressão Tridimensional , Fatores de Tempo
13.
Science ; 364(6444): 960-965, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31171693

RESUMO

Recent studies have demonstrated an array of stem cell-derived, self-organizing miniature organs, termed organoids, that replicate the key structural and functional characteristics of their in vivo counterparts. As organoid technology opens up new frontiers of research in biomedicine, there is an emerging need for innovative engineering approaches for the production, control, and analysis of organoids and their microenvironment. In this Review, we explore organ-on-a-chip technology as a platform to fulfill this need and examine how this technology may be leveraged to address major technical challenges in organoid research. We also discuss emerging opportunities and future obstacles for the development and application of organoid-on-a-chip technology.


Assuntos
Técnicas de Cultura de Células/instrumentação , Dispositivos Lab-On-A-Chip , Organoides , Humanos
14.
J Infect Dis ; 219(12): 1858-1866, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-30929010

RESUMO

Despite intensive research efforts, several fundamental disease processes for tuberculosis (TB) remain poorly understood. A central enigma is that host immunity is necessary to control disease yet promotes transmission by causing lung immunopathology. Our inability to distinguish these processes makes it challenging to design rational novel interventions. Elucidating basic immune mechanisms likely requires both in vivo and in vitro analyses, since Mycobacterium tuberculosis is a highly specialized human pathogen. The classic immune response is the TB granuloma organized in three dimensions within extracellular matrix. Several groups are developing cell culture granuloma models. In January 2018, NIAID convened a workshop, entitled "3-D Human in vitro TB Granuloma Model" to advance the field. Here, we summarize the arguments for developing advanced TB cell culture models and critically review those currently available. We discuss how integrating complementary approaches, specifically organoids and mathematical modeling, can maximize progress, and conclude by discussing future challenges and opportunities.


Assuntos
Granuloma/imunologia , Tuberculose/imunologia , Animais , Granuloma/microbiologia , Humanos , Modelos Teóricos , Mycobacterium tuberculosis/imunologia , Organoides/imunologia , Organoides/microbiologia , Tuberculose/microbiologia
15.
Nano Lett ; 19(3): 2074-2083, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30785755

RESUMO

Century-old Langmuir monolayer deposition still represents the most convenient approach to the production of monolayers of colloidal nanoparticles on solid substrates for practical biological and chemical-sensing applications. However, this approach simply yields arbitrarily shaped large monolayers on a flat surface and is strongly limited by substrate topography and interfacial energy. Here, we describe a generalized and facile method of rapidly producing uniform monolayers of various colloidal nanoparticles on arbitrary solid substrates by using an ordinary capillary tube. Our method is based on an interesting finding of inversion phenomenon of a nanoparticle-laden air-water interface by flowing through a capillary tube in a manner that prevents the particles from adhesion to the capillary sidewall, thereby presenting the nanoparticles face-first at the tube's opposite end for direct and one-step deposition onto a substrate. We show that our method not only allows the placement of a nanoparticle monolayer at target locations of solid substrates regardless of their surface geometry and adhesion but also enables the production of monolayers containing nanoparticles with different size, shape, surface charge, and composition. To explore the potential of our approach, we demonstrate the facile integration of gold nanoparticle monolayers into microfluidic devices for the real-time monitoring of molecular Raman signals under dynamic flow conditions. Moreover, we successfully extend the use of our method to developing on-demand Raman sensors that can be built directly on the surface of consumer products for practical chemical sensing and fingerprinting. Specifically, we achieve both the pinpoint deposition of gold nanoparticle monolayers and sensitive molecular detection from the deposited region on clothing fabric for the detection of illegal drug substances, a single grain of rice and an orange for pesticide monitoring, and a $100 bill as a potential anti-counterfeit measure, respectively. We believe that our method will provide unique opportunities to expand the utility of colloidal nanoparticles and to greatly improve the accessibility of nanoparticle-based sensing technologies.

16.
Eur Respir J ; 52(5)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30262579

RESUMO

Differences in lung anatomy between mice and humans, as well as frequently disappointing results when using animal models for drug discovery, emphasise the unmet need for in vitro models that can complement animal studies and improve our understanding of human lung physiology, regeneration and disease. Recent papers have highlighted the use of three-dimensional organoids and organs-on-a-chip to mimic tissue morphogenesis and function in vitro Here, we focus on the respiratory system and provide an overview of these in vitro models, which can be derived from primary lung cells and pluripotent stem cells, as well as healthy or diseased lungs. We emphasise their potential application in studies of respiratory development, regeneration and disease modelling.


Assuntos
Dispositivos Lab-On-A-Chip , Pulmão/crescimento & desenvolvimento , Pulmão/fisiologia , Organogênese , Organoides/fisiologia , Animais , Linhagem Celular , Humanos , Pneumopatias/fisiopatologia , Células-Tronco Pluripotentes/citologia
17.
Biomicrofluidics ; 12(4): 042211, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29887935

RESUMO

Occlusion of distal airways due to mucus plugs is a key pathological feature common to a wide variety of obstructive pulmonary diseases. Breathing-induced movement of airway mucus plugs along the respiratory tract has been shown to generate abnormally large mechanical stresses, acting as an insult that can incite acute injury to the airway epithelium. Here, we describe a unique microengineering strategy to model this pathophysiological process using a bioinspired microfluidic device. Our system combines an air-liquid interface culture of primary human small airway epithelial cells with a microengineered biomimetic platform to replicate the process of mucus exudation induced by airway constriction that leads to the formation of mucus plugs across the airway lumen. Specifically, we constructed a compartmentalized three-dimensional (3D) microfluidic device in which extracellular matrix hydrogel scaffolds reminiscent of airway stroma were compressed to discharge fluid into the airway compartment and form liquid plugs. We demonstrated that this plug formation process and subsequent movement of liquid plugs through the airway channel can be regulated in a precisely controlled manner. Furthermore, we examined the detrimental effect of plug propagation on the airway epithelium to simulate acute epithelial injury during airway closure. Our system allows for a novel biomimetic approach to modeling a complex and dynamic biophysical microenvironment of diseased human airways and may serve as an enabling platform for mechanistic investigation of key disease processes that drive the progression and exacerbation of obstructive pulmonary diseases.

18.
Adv Healthc Mater ; 7(2)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29121458

RESUMO

The current lack of knowledge about the effect of maternally administered drugs on the developing fetus is a major public health concern worldwide. The first critical step toward predicting the safety of medications in pregnancy is to screen drug compounds for their ability to cross the placenta. However, this type of preclinical study has been hampered by the limited capacity of existing in vitro and ex vivo models to mimic physiological drug transport across the maternal-fetal interface in the human placenta. Here the proof-of-principle for utilizing a microengineered model of the human placental barrier to simulate and investigate drug transfer from the maternal to the fetal circulation is demonstrated. Using the gestational diabetes drug glyburide as a model compound, it is shown that the microphysiological system is capable of reconstituting efflux transporter-mediated active transport function of the human placental barrier to limit fetal exposure to maternally administered drugs. The data provide evidence that the placenta-on-a-chip may serve as a new screening platform to enable more accurate prediction of drug transport in the human placenta.


Assuntos
Dispositivos Lab-On-A-Chip , Placenta/citologia , Feminino , Glibureto , Humanos , Gravidez
19.
Toxicol In Vitro ; 48: 53-70, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29277654

RESUMO

Inhalation toxicity testing, which provides the basis for hazard labeling and risk management of chemicals with potential exposure to the respiratory tract, has traditionally been conducted using animals. Significant research efforts have been directed at the development of mechanistically based, non-animal testing approaches that hold promise to provide human-relevant data and an enhanced understanding of toxicity mechanisms. A September 2016 workshop, "Alternative Approaches for Acute Inhalation Toxicity Testing to Address Global Regulatory and Non-Regulatory Data Requirements", explored current testing requirements and ongoing efforts to achieve global regulatory acceptance for non-animal testing approaches. The importance of using integrated approaches that combine existing data with in vitro and/or computational approaches to generate new data was discussed. Approaches were also proposed to develop a strategy for identifying and overcoming obstacles to replacing animal tests. Attendees noted the importance of dosimetry considerations and of understanding mechanisms of acute toxicity, which could be facilitated by the development of adverse outcome pathways. Recommendations were made to (1) develop a database of existing acute inhalation toxicity data; (2) prepare a state-of-the-science review of dosimetry determinants, mechanisms of toxicity, and existing approaches to assess acute inhalation toxicity; (3) identify and optimize in silico models; and (4) develop a decision tree/testing strategy, considering physicochemical properties and dosimetry, and conduct proof-of-concept testing. Working groups have been established to implement these recommendations.


Assuntos
Regulamentação Governamental , Exposição por Inalação/efeitos adversos , Testes de Toxicidade Aguda/métodos , Alternativas aos Testes com Animais , Animais , Simulação por Computador , Bases de Dados Factuais , Educação , Humanos , Pneumopatias/induzido quimicamente , Modelos Estatísticos , Relação Quantitativa Estrutura-Atividade
20.
Lab Chip ; 17(18): 3146-3158, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28809418

RESUMO

Semipermeable cell culture membranes are commonly used in multilayered microfluidic devices to mimic the basement membrane in vivo and to create compartmentalized microenvironments for physiological cell growth and differentiation. However, existing membranes are predominantly made up of synthetic polymers, providing limited capacity to replicate cellular interactions with native extracellular matrices that play a crucial role in the induction of physiological phenotypes. Here we describe a new type of cell culture membranes engineered from native extracellular matrix (ECM) materials that are thin, semipermeable, optically transparent, and amenable to integration into microfluidic cell culture devices. Facile and cost-effective fabrication of these membranes was achieved by controlled sequential steps of vitrification that transformed three-dimensional (3D) ECM hydrogels into structurally stable thin films. By modulating the composition of the ECM, our technique provided a means to tune key membrane properties such as optical transparency, stiffness, and porosity. For microfluidic cell culture, we constructed a multilayered microdevice consisting of two parallel chambers separated by a thin membrane insert derived from different types of ECM. This study showed that our ECM membranes supported attachment and growth of various types of cells (epithelial, endothelial, and mesenchymal cells) under perfusion culture conditions. Our data also revealed the promotive effects of the membranes on adhesion-associated intracellular signaling that mediates cell-ECM interactions. Moreover, we demonstrated the use of these membranes for constructing compartmentalized microfluidic cell culture systems to induce physiological tissue differentiation or to replicate interfaces between different tissue types. Our approach provides a robust platform to produce and engineer biologically active cell culture substrates that serve as promising alternatives to conventional synthetic membrane inserts. This strategy may contribute to the development of physiologically relevant in vitro cell culture models for a wide range of applications.


Assuntos
Técnicas de Cultura de Células/instrumentação , Matriz Extracelular/química , Membranas Artificiais , Técnicas Analíticas Microfluídicas/instrumentação , Animais , Adesão Celular , Técnicas de Cultura de Células/métodos , Células Cultivadas , Módulo de Elasticidade , Desenho de Equipamento , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA