Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(15): 3575-3584, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38569137

RESUMO

Observations of low-lying dark states in several photosynthetic complexes challenge our understanding of the mechanisms behind their efficient energy transfer processes. Computational models are necessary for providing novel insights into the nature and function of dark states, especially since these are not directly accessible in spectroscopy experiments. Here, we will focus on signatures of dark-type states in chlorosomes, a light-harvesting complex from green sulfur bacteria well-known for uniting a broad absorption band with very efficient energy transfer. In agreement with experiments, our simulations of two-dimensional electronic spectra capture the ultrafast exciton transfer occurring in 100s of femtoseconds within a single chlorosome cylinder. The sub-100 fs process corresponds to relaxation within the single-excitation manifold in a single chlorosome tube, where all initially created populations in the bright exciton states are quickly transferred to dark-type exciton states. Structural inhomogeneities on the local scale cause a redistribution of the oscillator strength, leading to the emergence of these dark-type exciton states, which dominate ultrafast energy transfer. The presence of the dark-type exciton states suppresses energy loss from an isolated chlorosome via fluorescence quenching, as observed experimentally. Our results further question whether relaxation to dark-exciton states is a leading process or merely competes with transfer to the baseplate within the photosynthetic apparatus of green sulfur bacteria.

2.
Inorg Chem ; 63(11): 5246-5259, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38429861

RESUMO

The diammonium precursor 1,4-phenylenedimethanammonium (PDMA) was used as a large organic spacer for the preparation of Dion-Jacobson-type quasi-2D perovskites (PDMA)(MA)n-1PbnI3n+1 (MA = methylammonium). Films with composition ⟨n⟩ = 5 comprised randomly orientated grains and multiple microstructural domains with locally differing n values. However, by mixing the Dion-Jacobson-type spacer PDMA and the Ruddlesden-Popper-type spacer propylammonium (PA), the crystal orientation in both the vertical and the horizonal directions became regulated. High crystallinity owing to well-matched interlayer distances was observed. Combining this spacer-engineering approach with the addition of methylammonium chloride (MACl) led to full vertical alignment of the crystal orientation. Moreover, the microstructural domains at the substrate interface changed from low-n (n = 1, 2, 3) to high-n (n = 4, 5), which may be beneficial for hole extraction at the interface between perovskite and hole transport layer due to a more finely tuned band alignment. Our work sheds light on manipulating the crystallization behavior of quasi-2D perovskite and further paves the way for highly stable and efficient perovskite devices.

3.
Phys Chem Chem Phys ; 26(22): 15856-15867, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38546236

RESUMO

Chlorosomes, the photosynthetic antenna complexes of green sulfur bacteria, are paradigms for light-harvesting elements in artificial designs, owing to their efficient energy transfer without protein participation. We combined magic angle spinning (MAS) NMR, optical spectroscopy and cryogenic electron microscopy (cryo-EM) to characterize the structure of chlorosomes from a bchQ mutant of Chlorobaculum tepidum. The chlorosomes of this mutant have a more uniform composition of bacteriochlorophyll (BChl) with a predominant homolog, [8Ethyl, 12Ethyl] BChl c, compared to the wild type (WT). Nearly complete 13C chemical shift assignments were obtained from well-resolved homonuclear 13C-13C RFDR data. For proton assignments heteronuclear 13C-1H (hCH) data sets were collected at 1.2 GHz spinning at 60 kHz. The CHHC experiments revealed intermolecular correlations between 132/31, 132/32, and 121/31, with distance constraints of less than 5 Å. These constraints indicate the syn-anti parallel stacking motif for the aggregates. Fourier transform cryo-EM data reveal an axial repeat of 1.49 nm for the helical tubular aggregates, perpendicular to the inter-tube separation of 2.1 nm. This axial repeat is different from WT and is in line with BChl syn-anti stacks running essentially parallel to the tube axis. Such a packing mode is in agreement with the signature of the Qy band in circular dichroism (CD). Combining the experimental data with computational insight suggests that the packing for the light-harvesting function is similar between WT and bchQ, while the chirality within the chlorosomes is modestly but detectably affected by the reduced compositional heterogeneity in bchQ.


Assuntos
Bacterioclorofilas , Chlorobi , Chlorobi/genética , Chlorobi/metabolismo , Bacterioclorofilas/química , Mutação , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Microscopia Crioeletrônica , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
4.
ACS Appl Mater Interfaces ; 16(4): 5217-5224, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38235571

RESUMO

In the present study, we investigate the effects of the applied external potential on a dye-sensitized NiO photocathode by time-resolved photoluminescence and femtosecond transient absorption spectroscopy under operating conditions. Instead of the anticipated acceleration of photoinduced hole injection from dye into NiO at a more negative applied potential, we observe that both hole injection and charge recombination are slowed down. We cautiously assign this effect to a variation in OH- ion concentration in the inner Helmholtz plane of the electrochemical double layer with applied potential, warranting further investigation for the realization of efficient solar fuel devices.

5.
ChemSusChem ; 17(2): e202300800, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37706622

RESUMO

P-type metal oxides, and in particular NiO, are typically used as hole accepting layers in dye-sensitized photocathodes. Delafossites (CuMO2 ) with M=B, Al, Cr or Ga have recently been proposed as attractive substitutes for NiO, with theoretically a higher hole mobility than NiO, therefore allowing a higher efficiency when the photocathode is applied in solar to fuel devices. We have experimentally validated the photoelectrochemical performance of photocathodes consisting of nanoporous CuBO2 (CBO) on Fluorine-doped Tin Oxide substrates, photosensitized with a light absorbing P1 dye. Femtosecond transient absorption and time-resolved photoluminescence studies show that light-induced hole injection occurs from the P1 dye into the CBO in a few ps, comparable to the time constant observed for NiO-based photocathodes. Importantly, the CBO-based photocathode shows significantly slower charge recombination than the NiO-based analogue. These results illustrate the promise of CBO as a p-type semiconductor in solar energy conversion devices.

6.
Adv Sci (Weinh) ; 11(9): e2306032, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38110821

RESUMO

A supramolecular photovoltaic strategy is applied to enhance power conversion efficiencies (PCE) of photoelectrochemical devices by suppressing electron-hole recombination after photoinduced electron transfer (PET). Here, the author exploit supramolecular localization of the redox mediator-in close proximity to the dye-through a rotaxane topology, reducing electron-hole recombination in p-type dye-sensitized solar cells (p-DSSCs). Dye PRotaxane features 1,5-dioxynaphthalene recognition sites (DNP-arms) with a mechanically-interlocked macrocyclic redox mediator naphthalene diimide macrocycle (3-NDI-ring), stoppering synthetically via click chemistry. The control molecule PStopper has stoppered DNP-arms, preventing rotaxane formation with the 3-NDI-ring. Transient absorption and time-resolved fluorescence spectroscopy studies show ultrafast (211 ± 7 fs and 2.92 ± 0.05 ps) PET from the dye-moiety of PRotaxane to its mechanically interlocked 3-NDI-ring-acceptor, slowing down the electron-hole recombination on NiO surfaces compared to the analogue . p-DSSCs employing PRotaxane (PCE = 0.07%) demonstrate a 30% PCE increase compared to PStopper (PCE = 0.05%) devices, combining enhancements in both open-circuit voltages (VOC = 0.43 vs 0.36 V) and short-circuit photocurrent density (JSC = -0.39 vs -0.34 mA cm-2 ). Electrochemical impedance spectroscopy shows that PRotaxane devices exhibit hole lifetimes (τh ) approaching 1 s, a 16-fold improvement compared to traditional I- /I3 - -based systems (τh = 50 ms), demonstrating the benefits obtained upon nanoengineering of interfacial dye-regeneration at the photocathode.

7.
J Phys Chem C Nanomater Interfaces ; 127(48): 23312-23322, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38090136

RESUMO

Quasi-two-dimensional (2D) metal halide perovskites (MHPs) are promising photovoltaic (PV) materials because of their impressive optical and optoelectronic properties and improved stability compared to their 3D counterparts. The presence of domains with varying numbers of inorganic layers between the organic spacers (n-phases), each with different bandgaps, makes the photoinduced carrier dynamics in films of these materials complex and intriguing. Existing interpretations of the ultrafast femto- or picosecond spectroscopy data have been inconsistent, most of them focusing either on exciton/charge transfer from low-n to high-n phases or on hot carrier cooling, but not combined. Here, we present a comprehensive study of the carrier dynamics in the Dion-Jacobson type (PDMA)(MA)(n-1)PbnI(3n+1) (PDMA = 1,4-phenylenedimethylammonium, MA = methylammonium) perovskite, stoichiometrically prepared as ⟨n⟩ = 5. Within the film, a coexistence of various n-phases is observed instead of solely the n = 5 phase, resulting in an interesting energy landscape for the motion of excitons and charge carriers. We disentangle hot carrier cooling from exciton transfer between low-n and high-n phases using ultrafast time-resolved photoluminescence and transient absorption spectroscopy. Photophysical modeling by target analysis shows that carrier cooling occurring on a subpicosecond time scale is followed by exciton transfer from low-n into high-n phases in ca. 35 ps when the film is excited by 532 or 490 nm light. Carriers in the high-n phase are much longer lived and decay in a ns time window. Overall, our results provide a comprehensive understanding of the photophysics of this material, which helps to optimize quasi-2D MHP materials for a new generation of PV devices.

8.
J Phys Chem B ; 127(34): 7487-7496, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37594912

RESUMO

Chlorosomes from green bacteria perform the most efficient light capture and energy transfer, as observed among natural light-harvesting antennae. Hence, their unique functional properties inspire developments in artificial light-harvesting and molecular optoelectronics. We examine two distinct organizations of the molecular building blocks as proposed in the literature, demonstrating how these organizations alter light capture and energy transfer, which can serve as a mechanism that the bacteria utilize to adapt to changes in light conditions. Spectral simulations of polarization-resolved two-dimensional electronic spectra unravel how changes in the helicity of chlorosomal aggregates alter energy transfer. We show that ultrafast anisotropy decay presents a spectral signature that reveals contrasting energy pathways in different chlorosomes.

9.
J Phys Chem B ; 127(35): 7581-7589, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37611240

RESUMO

The antenna complex of green sulfur bacteria, the chlorosome, is one of the most efficient supramolecular systems for efficient long-range exciton transfer in nature. Femtosecond transient absorption experiments provide new insight into how vibrationally induced quantum overlap between exciton states supports highly efficient long-range exciton transfer in the chlorosome of Chlorobium tepidum. Our work shows that excitation energy is delocalized over the chlorosome in <1 ps at room temperature. The following exciton transfer to the baseplate occurs in ∼3 to 5 ps, in line with earlier work also performed at room temperature, but significantly faster than at the cryogenic temperatures used in previous studies. This difference can be attributed to the increased vibrational motion at room temperature. We observe a so far unknown impact of the excitation photon energy on the efficiency of this process. This dependency can be assigned to distinct optical domains due to structural disorder, combined with an exciton trapping channel competing with exciton transfer toward the baseplate. An oscillatory transient signal damped in <1 ps has the highest intensity in the case of the most efficient exciton transfer to the baseplate. These results agree well with an earlier computational finding of exciton transfer driven by low-frequency rotational motion of molecules in the chlorosome. Such an exciton transfer process belongs to the quantum coherent regime, for which the Förster theory for intermolecular exciton transfer does not apply. Our work hence strongly indicates that structural flexibility is important for efficient long-range exciton transfer in chlorosomes.

10.
J Phys Chem C Nanomater Interfaces ; 127(29): 14353-14362, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37529662

RESUMO

Despite the promising performance of Ru nanoparticles or nanoclusters on nanostructured TiO2 in photocatalytic and photothermal reactions, a mechanistic understanding of the photophysics is limited. The aim of this study is to uncover the nature of light-induced processes in Ru/TiO2 and the role of UV versus visible excitation by time-resolved photoluminescence (PL) spectroscopy. The PL at a 267 nm excitation is predominantly due to TiO2, with a minor contribution of the Ru nanoclusters. Relative to TiO2, the PL of Ru/TiO2 following a 267 nm excitation is significantly blue-shifted, and the bathochromic shift with time is smaller. We show by global analysis of the spectrotemporal PL behavior that for both TiO2 and Ru/TiO2 the bathochromic shift with time is likely caused by the diffusion of electrons from the TiO2 bulk toward the surface. During this directional motion, electrons may recombine (non)radiatively with relatively immobile hole polarons, causing the PL spectrum to red-shift with time following excitation. The blue-shifted PL spectra and smaller bathochromic shift with time for Ru/TiO2 relative to TiO2 indicate surface PL quenching, likely due to charge transfer from the TiO2 surface into the Ru nanoclusters. When deposited on SiO2 and excited at 532 nm, Ru shows a strong emission. The PL of Ru when deposited on TiO2 is completely quenched, demonstrating interfacial charge separation following photoexcitation of the Ru nanoclusters with a close to unity quantum yield. The nature of the charge-transfer phenomena is discussed, and the obtained insights indicate that Ru nanoclusters should be deposited on semiconducting supports to enable highly effective photo(thermal)catalysis.

11.
J Phys Chem B ; 127(5): 1097-1109, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36696537

RESUMO

Chlorosomes are supramolecular aggregates that contain thousands of bacteriochlorophyll molecules. They perform the most efficient ultrafast excitation energy transfer of all natural light-harvesting complexes. Their broad absorption band optimizes light capture. In this study, we identify the microscopic sources of the disorder causing the spectral width and reveal how it affects the excited state properties and the optical response of the system. We combine molecular dynamics, quantum chemical calculations, and response function calculations to achieve this goal. The predicted linear and two-dimensional electronic spectra are found to compare well with experimental data reproducing all key spectral features. Our analysis of the microscopic model reveals the interplay of static and dynamic disorder from the molecular perspective. We find that hydrogen bonding motifs are essential for a correct description of the spectral line shape. Furthermore, we find that exciton delocalization over tens to hundreds of molecules is consistent with the two-dimensional electronic spectra.

12.
J Am Chem Soc ; 144(24): 11010-11018, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35675488

RESUMO

Photoelectrochemical (PEC) cells containing photocathodes based on functionalized NiO show a promising solar-to-hydrogen conversion efficiency. Here, we present mechanistic understanding of the photoinduced charge transfer processes occurring at the photocathode/electrolyte interface. We demonstrate via advanced photophysical characterization that surface hydroxyl groups formed at the NiO/water interface not only promote photoinduced hole transfer from the dye into NiO, but also enhance the rate of charge recombination. Both processes are significantly slower when the photocathode is exposed to dry acetonitrile, while in air an intermediate behavior is observed. These data suggest that highly efficient devices can be developed by balancing the quantity of surface hydroxyl groups of NiO, and presumably of other p-type metal oxide semiconductors.

13.
J Phys Chem C Nanomater Interfaces ; 125(29): 16049-16058, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34484551

RESUMO

Dye-sensitized photoelectrochemical (DSPEC) water splitting is an attractive approach to convert and store solar energy into chemical bonds. However, the solar conversion efficiency of a DSPEC cell is typically low due to a poor performance of the photocathode. Here, we demonstrate that Cu-doping improves the performance of a functionalized NiO-based photocathode significantly. Femtosecond transient absorption experiments show longer-lived photoinduced charge separation for the Cu:NiO-based photocathode relative to the undoped analogue. We present a photophysical model that distinguishes between surface and bulk charge recombination, with the first process (∼10 ps) occurring more than 1 order of magnitude faster than the latter. The longer-lived photoinduced charge separation in the Cu:NiO-based photocathode likely originates from less dominant surface recombination and an increased probability for holes to escape into the bulk and to be transported to the electrical contact of the photocathode. Cu-doping of NiO shows promise to suppress detrimental surface charge recombination and to realize more efficient photocathodes.

14.
ACS Appl Mater Interfaces ; 12(1): 1905-1912, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31818094

RESUMO

Plasmonic sensitization of semiconductors is an attractive approach to increase light-induced photocatalytic performance; one method is to use plasmonic nanostructures in core@shell geometry. The occurrence and mechanism of synergetic effects in photocatalysis of such geometries are under intense debate and proposed to occur either through light-induced charge transfer (CT) or through thermal effects. This study focuses on the relation between the dimensions of Ag@CeO2 nanocubes, the wavelength-dependent efficiency, and the mechanism of light-induced direct CT. A 4-mercaptobenzoic acid (4-MBA) linker between core and shell acts as a Raman probe for CT. For all Ag@CeO2 nanocubes, CT increases with decreasing excitation wavelength, with notable increase at and below 514 nm. This is fully explainable by CT from silver to the 4-MBA LUMO, with the increase for excitation wavelengths that exceed the Ag/4-MBA LUMO gap of 2.28 eV (543 nm). A second general trend observed is an increase in CT yield with ceria shell thickness, which is assigned to relaxation of the excited electron further into the ceria conduction band, potentially producing defects.

15.
Chemphyschem ; 19(22): 3084-3091, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30221834

RESUMO

Recent studies on hydrogen-generating supramolecular bimetallic photocatalysts indicate a more important role of the peripheral ligands than expected, motivating us to design a Ru/Pt complex with 4,7-diphenyl-1,10-phenanthroline peripheral ligands. Photoinduced intra- and inter-ligand internal conversion processes have been investigated using transient absorption spectroscopy, spanning the femto- to nanosecond timescale. After photoexcitation and ultrafast intersystem crossing, triplet states localised on either the peripheral ligands or on the bridging ligand/catalytic unit are populated in a non-equilibrated way. Time-resolved photoluminescence demonstrates that the lifetime for the Ru/Pt dinuclear species (795±8 ns) is significantly less than that of the mononuclear analogue (1375±20 ns). The photocatalytic studies show modest hydrogen turnover numbers, which is possibly caused by the absence of an excited state equilibrium. Finally, we identify challenges that must be overcome to further develop this class of photocatalysts and propose directions for future research.

16.
J Phys Chem A ; 122(31): 6396-6406, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30052048

RESUMO

Photoinduced electronic and structural changes of a hydrogen-generating supramolecular RuPt photocatalyst are studied by a combination of time-resolved photoluminescence, optical transient absorption, and X-ray absorption spectroscopy. This work uses the element specificity of X-ray techniques to focus on the interplay between the photophysical and -chemical processes and the associated time scales at the catalytic Pt moiety. We observe very fast (<30 ps) photoreduction of the Pt catalytic site, followed by an ∼600 ps step into a strongly oxidized Pt center. The latter process is likely induced by oxidative addition of reactive iodine species. The oxidized Pt species is long-lived and fully recovers to the original ground state complex on a >10 µs time scale. However, the photosensitizing Ru moiety is fully restored on a much shorter ∼300 ns time scale. This reaction scheme implies that we may withdraw two electrons from a catalyst that is activated by a single photon.

17.
Chem Commun (Camb) ; 52(60): 9371-4, 2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27367442

RESUMO

The contrasting early-time photodynamics of two related Ru/Pt photocatalysts with very different photocatalytic H2 generation capabilities are reported. Ultrafast equilibration (535 ± 17 fs) creates an electron reservoir on the peripheral ligands of the ester substituted complex, allowing a dramatic increase in photocatalytic performance. This insight opens the way towards a novel design strategy for H2 generating molecular photocatalysts.

18.
Chemphyschem ; 17(17): 2654-9, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27258159

RESUMO

The effect of the catalytic moiety on the early-time photodynamics of Ru/M (M=Pt or Pd) bimetallic photocatalysts is studied by ultrafast transient absorption spectroscopy. In comparison to the Ru/Pd photocatalyst described earlier, the Ru/Pt analogue shows complex excited-state dynamics with three distinct kinetic components ranging from sub-ps to 10(2)  ps, requiring a more sophisticated photophysical model than that developed earlier for the Ru/Pd complex. In the Pu/Pt photocatalyst, an additional lower-lying excited state is proposed to quench the hot higher-lying triplet metal-to-ligand charge-transfer states. Furthermore, a strong excitation wavelength dependence on the population of excited states is observed for both the Ru/Pt and Ru/Pd complexes, indicating a non-equilibrated distribution even on the 10(2)  ps timescale. These insights shed light on the significant impact of the catalytic moiety on the fundamental early-time photophysics of Ru-based photocatalysts.

19.
Inorg Chem ; 55(6): 2685-90, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26925834

RESUMO

The photocatalytic generation of hydrogen (H2) from protons by two cyclometalated ruthenium-platinum polypyridyl complexes, [Ru(bpy)2(2,5-bpp)PtIS](2+) (1) and [Ru(dceb)2(2,5-bpp)PtIS](2+) (2) [where bpy = 2,2'-bipyridine, 2,5-bpp = 2,2',5',2″-terpyridine, dceb = 4,4'-di(carboxyethyl)bipyridine, and S = solvent], is reported. Turnover numbers (TONs) for H2 generation were increased by nearly an order of magnitude by the introduction of carboxyethyl ester units, i.e., from 80 for 1P to 650 for 2P after 6 h of irradiation, with an early turnover frequency (TOF) increasing from 15 to 200 h(-1). The TON and TOF values for 2P are among the highest reported to date for supramolecular photocatalysts. The increase correlates with stabilization of the excited states localized on the peripheral ligands of the light-harvesting Ru(II) center.

20.
Faraday Discuss ; 185: 143-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26444433

RESUMO

A series of supramolecular assemblies of the type [Ru(L-L)2(L'-L)MX2)](n+) are reported where L-L is 2,2'-bipyridine (bipy), 4,4'-di-tetra-butyl-bipyridine (tbbipy) or 4,4'-diethoxycarbonyl-2,2'-bipyridine (dceb), L-L' is tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine (tpphz), 2,2':5',2''-terpyridine (2,5-bpp), 2,2':6',2''-terpyridine, (2,6-bpp), 2,5-di(pyridine-2-yl)pyrazine (2,5-dpp) or 2,3-di(pyridine-2-yl)pyrazine (2,3-dpp), and MX2 is PdCl2, PtCl2 or PtI2. The photocatalytic behaviour with respect to hydrogen generation of these compounds and their ultrafast photophysical properties are discussed as a function of the nature of the peripheral ligands, the bridging ligands and the catalytic centre. The results obtained show how differences in the chemical composition of the photocatalysts can affect intramolecular photoinduced electron transfer processes and the overall photocatalytic efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA