Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38352529

RESUMO

The interaction of host and Ebola virus (EBOV) proteins is required for establishing infection of the cell. To identify protein binding partners, a proximity-dependent protein interaction screen was performed for six EBOV proteins. Hits were computationally mapped onto a human protein-protein interactome and then annotated with viral proteins to reveal known and previously undescribed EBOV-host protein interactions and processes. Importantly, this approach efficiently arranged proteins into functional complexes associated with single viral proteins. Focused characterization of interactions between EBOV VP35 and the mRNA decapping complex demonstrated that VP35 binds the scaffold protein EDC4 through the C-terminal subdomain, with each protein found associated in EBOV-infected cells. Mechanistically, depletion of three components of the complex each similarly inhibited viral replication by reducing early viral RNA synthesis. Overall, we demonstrate successful identification of EBOV protein interaction with entire cellular machines, providing a deeper understanding of replication mechanism for therapeutic intervention.

2.
bioRxiv ; 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33907750

RESUMO

Identification of host factors contributing to replication of viruses and resulting disease progression remains a promising approach for development of new therapeutics. Here, we evaluated 6710 clinical and preclinical compounds targeting 2183 host proteins by immunocytofluorescence-based screening to identify SARS-CoV-2 infection inhibitors. Computationally integrating relationships between small molecule structure, dose-response antiviral activity, host target and cell interactome networking produced cellular networks important for infection. This analysis revealed 389 small molecules, >12 scaffold classes and 813 host targets with micromolar to low nanomolar activities. From these classes, representatives were extensively evaluated for mechanism of action in stable and primary human cell models, and additionally against Beta and Delta SARS-CoV-2 variants and MERS-CoV. One promising candidate, obatoclax, significantly reduced SARS-CoV-2 viral lung load in mice. Ultimately, this work establishes a rigorous approach for future pharmacological and computational identification of novel host factor dependencies and treatments for viral diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA