Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Radiat Res ; 192(5): 562-576, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31545677

RESUMO

In this work, we compared the genomic distribution of common radiation-induced chromosomal breaks to eight different data sets covering the whole human genome. Sites with a high probability of chromatid breakage after exposure to low and high ionization density radiations were often located inside common and rare fragile sites, indicating that they may be a new and more local type of DNA repair-related fragility. Breaks in specific chromosome bands after acute exposure to oil and benzene also showed strong correlation with these sites and fragile sites. In addition, close correlation was found with cytologically detected chiasma and MLH1 immunofluorescence sites and with the HapMap recombination density distributions. Also, of interest, copy number changes occurred predominantly at radiation-induced breaks and fragile sites, at least for breast cancers with poor prognosis, and they decreased weakly but significantly in regions with increasing recombination and CpG density. An increased CpG density is linked to regions of high gene density to secure high-fidelity reproduction and survival. To minimize cancer induction, cancer-related genes are often located in regions of decreased recombination density and/or higher-than-average CpG density. It is compelling that all these data sets were influenced by the cells' handling of double-strand breaks and, more generally, DNA damage on its genome. In fact, the DNA repair genes systematically avoid regions with a high recombination density, as they need to be intact to accurately handle repairable DNA lesions.


Assuntos
Quebra Cromossômica , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Neoplasias da Mama/genética , Cromátides/efeitos da radiação , Ilhas de CpG , Feminino , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Humanos , Microscopia de Fluorescência , Prognóstico , Recombinação Genética
2.
Mol Cytogenet ; 8: 67, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26300975

RESUMO

BACKGROUND: Trisomy 21 Down syndrome is the most common genetic cause for congenital malformations and intellectual disability. It is well known that in the outstanding majority of cases the extra chromosome 21 originates from the mother but only in less than 10 % from the father. The mechanism underlying this striking difference in parental origin of Trisomy 21 Down syndrome is still unknown. However, it seems likely that the main reason is a much higher stringency in the elimination of any trisomy 21 cells during fetal testicular than ovarian development. We have here focussed attention on the paternal gametic output, i.e. the incidence of disomy 21 in spermatozoa. RESULTS: We have used fluorescence in situ hybridisation (FISH) to determine the copy number of chromosome 21 in spermatozoa from 11 men with normal spermiograms. Due to the well-known risk of false positive and false negative signals using a single FISH probe, we have applied two chromosome 21q probes, and we have added a chromosome 18-specific probe to allow differentiation between disomy 21 and diploidy. Analysing a total number of 2000 spermatozoa per case, we documented an average incidence of disomy 21 at 0.13 %, with a range of 0.00-0.25 % and a SD of 0.08. There was no indication of diploidy in this cohort of 22,000 sperm. CONCLUSION: Numerous previous studies on the incidence of disomy 21 in sperm have been published, using FISH. As far as we are aware, none of these have applied more than a single chromosome 21-specific probe. Accepting our mean of 0.13 % of disomy 21, and providing there is no selective fertilisation capability of disomy 21 sperm in relation to the normal, we conclude that around 1 in 800 conceptions is expected to be trisomic for chromosome 21 of paternal origin. Bearing in mind that the maternal origin likely is at least 10 times more common, we tentatively propose that around 1 in 80 oocytes in the maternal ovarian reserve may be disomy 21. One reason for this discrepancy may be a more stringent selection against aberrant chromosome numbers during spermatogenesis than oogenesis. Further work is required to determine the relevant stages of spermatogenesis at which such a selection may take place.

3.
J Clin Med ; 3(1): 167-75, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26237255

RESUMO

It has now been over 50 years since it was discovered that Down syndrome is caused by an extra chromosome 21, i.e., trisomy 21. In the interim, it has become clear that in the majority of cases, the extra chromosome is inherited from the mother, and there is, in this respect, a strong maternal age effect. Numerous investigations have been devoted to clarifying the underlying mechanism, most recently suggesting that this situation is exceedingly complex, involving both biological and environmental factors. On the other hand, it has also been proposed that germinal trisomy 21 mosaicism, arising during the very early stages of maternal oogenesis with accumulation of trisomy 21 germ cells during subsequent development, may be the main predisposing factor. We present data here on the incidence of trisomy 21 mosaicism in a cohort of normal fetal ovarian samples, indicating that an accumulation of trisomy 21 germ cells does indeed take place during fetal oogenesis, i.e., from the first to the second trimester of pregnancy. We presume that this accumulation of trisomy 21 (T21) cells is caused by their delay in maturation and lagging behind the normal cells. We further presume that this trend continues during the third trimester of pregnancy and postnatally, up until ovulation, thereby explaining the maternal age effect in Down syndrome.

5.
Mol Cytogenet ; 4: 10, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21477316

RESUMO

BACKGROUND: It is now nearly a century since it was first discovered that crossovers between homologous parental chromosomes, originating at the Prophase stage of Meiosis I, are not randomly placed. In fact, the number and distribution of crossovers are strictly regulated with crossovers/chiasmata formed in optimal positions along the length of individual chromosomes, facilitating regular chromosome segregation at the first meiotic division. In spite of much research addressing this question, the underlying mechanism(s) for the phenomenon called crossover/chiasma interference is/are still unknown; and this constitutes an outstanding biological enigma. RESULTS: The Chromosome Oscillatory Movement (COM) model for crossover/chiasma interference implies that, during Prophase of Meiosis I, oscillatory movements of the telomeres (attached to the nuclear membrane) and the kinetochores (within the centromeres) create waves along the length of chromosome pairs (bivalents) so that crossing-over and chiasma formation is facilitated by the proximity of parental homologs induced at the nodal regions of the waves thus created. This model adequately explains the salient features of crossover/chiasma interference, where (1) there is normally at least one crossover/chiasma per bivalent, (2) the number is correlated to bivalent length, (3) the positions are dependent on the number per bivalent, (4) interference distances are on average longer over the centromere than along chromosome arms, and (5) there are significant changes in carriers of structural chromosome rearrangements. CONCLUSIONS: The crossover/chiasma frequency distribution in humans and mice with normal karyotypes as well as in carriers of structural chromosome rearrangements are those expected on the COM model. Further studies are underway to analyze mechanical/mathematical aspects of this model for the origin of crossover/chiasma interference, using string replicas of the homologous chromosomes at the Prophase stage of Meiosis I. The parameters to vary in this type of experiment will include: (1) the mitotic karyotype, i.e. ranked length and centromere index of the chromosomes involved, (2) the specific bivalent/multivalent length and flexibility, dependent on the way this structure is positioned within the nucleus and the size of the respective meiocyte nuclei, (3) the frequency characteristics of the oscillatory movements at respectively the telomeres and the kinetochores.

6.
J Mol Diagn ; 12(6): 797-807, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20847278

RESUMO

The demographic tendency in industrial countries to delay childbearing, coupled with the maternal age effect in common chromosomal aneuploidies and the risk to the fetus of invasive prenatal diagnosis, are potent drivers for the development of strategies for noninvasive prenatal diagnosis. One breakthrough has been the discovery of differentially methylated cell-free fetal DNA in the maternal circulation. We describe novel bisulfite conversion- and methylation-sensitive enzyme digestion DNA methylation-related approaches that we used to diagnose Turner syndrome from first trimester samples. We used an X-linked marker, EF3, and an autosomal marker, RASSF1A, to discriminate between placental and maternal blood cell DNA using real-time methylation-specific PCR after bisulfite conversion and real-time PCR after methylation-sensitive restriction digestion. By normalizing EF3 amplifications versus RASSF1A outputs, we were able to calculate sex chromosome/autosome ratios in chorionic villus samples, thus permitting us to correctly diagnose Turner syndrome. The identification of this new marker coupled with the strategy outlined here may be instrumental in the development of an efficient, noninvasive method of diagnosis of sex chromosome aneuploidies in plasma samples.


Assuntos
Aneuploidia , Cromossomos Humanos X/genética , Metilação de DNA , Diagnóstico Pré-Natal/métodos , Biomarcadores/sangue , DNA/análise , Feminino , Feto/metabolismo , Feto/fisiologia , Humanos , Masculino , Placenta/fisiologia , Gravidez/sangue , Proteínas Supressoras de Tumor/sangue , Proteínas Supressoras de Tumor/genética , Síndrome de Turner/sangue , Síndrome de Turner/genética
7.
Mol Cytogenet ; 3: 4, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20178584

RESUMO

BACKGROUND: Down syndrome (DS), characterized by an extra free chromosome 21 is the most common genetic cause for congenital malformations and learning disability. It is well known that the extra chromosome 21 originates from the mother in more than 90% of cases, the incidence increases with maternal age and there is a high recurrence in young women. In a previous report we have presented data to indicate that maternal trisomy 21 (T21) ovarian mosaicism might provide the major causative factor underlying these patterns of DS inheritance. One important outstanding question concerns the reason why the extra chromosome 21 in DS rarely originates from the father, i.e. in less than 10% of T21 DS cases. We here report data indicating that one reason for this parental sex difference is a very much lower degree of fetal testicular in comparison to ovarian T21 mosaicism. RESULTS: We used fluorescence in situ hybridisation (FISH) with two chromosome 21-specific probes to determine the copy number of chromosome 21 in fetal testicular cell nuclei from four male fetuses, following termination of pregnancy for a non-medical/social reason at gestational age 14-19 weeks. The cells studied were selected on the basis of their morphology alone, pending immunological specification of the relevant cell types. We could not detect any indication of testicular T21 mosaicism in any of these four male fetuses, when analysing at least 2000 cells per case (range 2038-3971, total 11.842). This result is highly statistically significant (p < 0.001) in comparison to the average of 0.54% ovarian T21 mosaicism (range 0.20-0.88%) that we identified in eight female fetuses analysing a total of 12.634 cells, as documented in a previous report in this journal. CONCLUSION: Based on these observations we suggest that there is a significant sex difference in degrees of fetal germ line T21 mosaicism. Thus, it would appear that most female fetuses are T21 ovarian mosaics, while in sharp contrast most male fetuses may be either very low grade T21 testicular mosaics or they may be non-mosaics. We further propose that this sex difference in germ line T21 mosaicism may explain the much less frequent paternal origin of T21 DS than maternal. The mechanisms underlying the DS cases, where the extra chromosome 21 does originate from the father, remains unknown and further studies in this respect are required.

8.
Reproduction ; 139(1): 1-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19755486

RESUMO

We have recently documented that trisomy 21 mosaicism is common in human foetal ovaries. On the basis of this observation we propose that the maternal age effect in Down syndrome (DS) is caused by the differential behaviour of trisomy 21 in relation to disomy 21 oocytes during development from foetal life until ovulation in adulthood. In particular, we suggest that trisomy 21 oocytes, lagging behind those that are disomic, may escape the timed pruning of the seven million in foetal life to the 300-400 finally selected for ovulation. The net effect of this preferential elimination will be an accumulation of trisomy 21 oocytes in the ovarian reserve of older women. We here highlight the implications of this Oocyte Mosaicism Selection (OMS) model with respect to the prevalent view that the maternal age effect is complex, dependent on many different biological and environmental factors. We examine conclusions drawn from recent large-scale studies in families, tracing DNA markers along the length of chromosome 21q between parents and DS children, in comparison to the OMS model. We conclude that these family linkage data are equally compatible with the maternal age effect originating from the accumulation of trisomy 21 oocytes with advancing maternal age. One relatively straightforward way to get to grips with what is actually going on in this regard would be to compare incidence of trisomy 21 oocytes (and their pairing configurations) in foetal ovaries with that in oocytes at the meiosis I stage from adult women.


Assuntos
Envelhecimento/genética , Síndrome de Down/genética , Idade Materna , Mosaicismo , Oócitos/crescimento & desenvolvimento , Ovário/embriologia , Ovário/crescimento & desenvolvimento , Envelhecimento/fisiologia , Cromossomos Humanos Par 21/genética , Feminino , Ligação Genética , Marcadores Genéticos , Humanos , Masculino , Modelos Biológicos
9.
Curr Genomics ; 11(6): 409-19, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21358985

RESUMO

It is well known that varying degrees of mosaicism for Trisomy 21, primarily a combination of normal and Trisomy 21 cells within individual tissues, may exist in the human population. This involves both Trisomy 21 mosaicism occurring in the germ line and Trisomy 21 mosaicism documented in different somatic tissues, or indeed a combination of both in the same subjects. Information on the incidence of Trisomy 21 mosaicism in different tissue samples from people with clinical features of Down syndrome as well as in the general population is, however, still limited. One of the main reasons for this lack of detailed knowledge is the technological problem of its identification, where in particular low grade/cryptic Trisomy 21 mosaicism, i.e. occurring in less than 3-5% of the respective tissues, can only be ascertained by fluorescence in situ hybridization (FISH) methods on large cell populations from the different tissue samples.In this review we summarize current knowledge in this field with special reference to the question on the likely incidence of germinal and somatic Trisomy 21 mosaicism in the general population and its mechanisms of origin. We also highlight the reproductive and clinical implications of this type of aneuploidy mosaicism for individual carriers. We conclude that the risk of begetting a child with Trisomy 21 Down syndrome most likely is related to the incidence of Trisomy 21 cells in the germ line of any carrier parent. The clinical implications for individual carriers may likewise be dependent on the incidence of Trisomy 21 in the relevant somatic tissues. Remarkably, for example, there are indications that Trisomy 21 mosaicism will predispose carriers to conditions such as childhood leukemia and Alzheimer's Disease but there is on the other hand a possibility that the risk of solid cancers may be substantially reduced.

10.
Clin Chem Lab Med ; 47(10): 1239-45, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19743957

RESUMO

BACKGROUND: High-density lipoprotein (HDL) is a major plasma lipoprotein directly associated with cholesterol metabolism. The ATP binding cassette transporter 1 gene (ABCA1) is one of the major genes modulating plasma levels of HDL-cholesterol (HDL-C). Rare alleles of ABCA1 associated with extreme HDL-C concentrations have not been previously investigated in the Chinese. METHODS: Blood samples were collected from 470 subjects whose HDL-C concentrations were within the top 5% of the distribution, 335 subjects in the lowest 5%, and 220 within the range 5%-95%. First, we sequenced all exons of the ABCA1 gene from 50 subjects from the group with extremely high HDL-C, and 50 from the group with extremely low HDL-C concentrations. Next, in the remaining subjects, we genotyped the non-synonymous variants identified exclusively with either extreme group. RESULTS: Four novel non-synonymous alleles were identified; all were rare. Alleles c.3029C>T (p.Ala1010Val) and c.5399A>G (p.Asn1800Ser) were found exclusively in the low group, c.2031C>A (p.Asp677Glu) and c.2660G>T (p.Cys887Phe) exclusively in the high group. CONCLUSIONS: Our results show that some rare alleles of ABCA1 are associated with marked phenotypes, supporting the "rare-variant common-disease" hypothesis. Certain alleles also provide tools for identifying individuals at high risk of dyslipidaemia, allowing for early therapeutic intervention.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Alelos , Povo Asiático/genética , HDL-Colesterol/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Animais , Sequência de Bases , Membrana Celular/metabolismo , China/etnologia , Sequência Conservada , Feminino , Genótipo , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação , Fenótipo , Ratos , Especificidade da Espécie , Taq Polimerase/metabolismo
11.
Am J Pathol ; 174(5): 1609-18, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19349366

RESUMO

The use of epigenetic differences between maternal whole blood and fetal (placental) DNA is one of the main areas of interest for the development of noninvasive prenatal diagnosis of aneuploidies. However, the lack of detailed chromosome-wide identification of differentially methylated sites has limited the application of this approach. In this study, we describe an analysis of chromosome-wide methylation status using methylation DNA immunoprecipitation coupled with high-resolution tiling oligonucleotide array analysis specific for chromosomes 21, 18, 13, X, and Y using female whole blood and placental DNA. We identified more than 2000 regions of differential methylation between female whole blood and placental DNA on each of the chromosomes tested. A subset of the differentially methylated regions identified was validated by real-time quantitative polymerase chain reaction. Additionally, correlation of these regions with CpG islands, genes, and promoter regions was investigated. Between 56 to 83% of the regions were located within nongenic regions whereas only 1 to 11% of the regions overlapped with CpG islands; of these, up to 65% were found in promoter regions. In summary, we identified a large number of previously unreported fetal epigenetic molecular markers that have the potential to be developed into targets for noninvasive prenatal diagnosis of trisomy 21 and other common aneuploidies. In addition, we demonstrated the effectiveness of the methylation DNA immunoprecipitation approach in the enrichment of hypermethylated fetal DNA.


Assuntos
Aneuploidia , Biomarcadores/sangue , Metilação de DNA , DNA/genética , Feto/metabolismo , Placenta/metabolismo , Diagnóstico Pré-Natal/métodos , Cromossomos Humanos Par 13/genética , Cromossomos Humanos Par 18/genética , Cromossomos Humanos Par 21/genética , Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Ilhas de CpG , DNA/análise , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Humanos , Imunoprecipitação , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Mol Cytogenet ; 1: 21, 2008 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-18801168

RESUMO

BACKGROUND: Down syndrome, characterized by an extra chromosome 21 is the most common genetic cause for congenital malformations and learning disability. It is well known that the extra chromosome 21 most often originates from the mother, the incidence increases with maternal age, there may be aberrant maternal chromosome 21 recombination and there is a higher recurrence in young women. In spite of intensive efforts to understand the underlying reason(s) for these characteristics, the origin still remains unknown. We hypothesize that maternal trisomy 21 ovarian mosaicism might provide the major causative factor. RESULTS: We used fluorescence in situ hybridization (FISH) with two chromosome 21-specific probes to determine the copy number of chromosome 21 in ovarian cells from eight female foetuses at gestational age 14-22 weeks. All eight phenotypically normal female foetuses were found to be mosaics, containing ovarian cells with an extra chromosome 21. Trisomy 21 occurred with about the same frequency in cells that had entered meiosis as in pre-meiotic and ovarian mesenchymal stroma cells. CONCLUSION: We suggest that most normal female foetuses are trisomy 21 ovarian mosaics and the maternal age effect is caused by differential selection of these cells during foetal and postnatal development until ovulation. The exceptional occurrence of high-grade ovarian mosaicism may explain why some women have a child with Down syndrome already at young age as well as the associated increased incidence at subsequent conceptions. We also propose that our findings may explain the aberrant maternal recombination patterns previously found by family linkage analysis.

13.
Reprod Biomed Online ; 15(2): 227-35, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17697502

RESUMO

This report describes the first identification and characterization of three chromosome-21-specific DNA sequences (and reference sequences from other chromosomes) that are differentially methylated between peripheral blood and placental tissue, with the aim of providing epigenetic biomarkers for quantifying cell-free fetal DNA in maternal plasma. To select sequences to be screened for differential methylation, three strategies were adopted: (i) investigating promoters of highly differentially expressed genes; (ii) choosing 'random' promoter regions; and (iii) choosing 'random' non-promoter regions. Over 200 pre-selected DNA sequences were screened using a methylation-specific restriction enzyme assay. Differentially methylated sequences located at 21q22.3 (AIRE, SIM2 and ERG genes), 1q32.1 (CD48 gene and FAIM3 gene), 2p14 (ARHGAP25 gene) and 12q24 (SELPLG gene) were identified. Bisulphite conversion confirmed that CpG sites within the AIRE promoter region are highly differentially methylated, and optimized methylation-specific primers for this region that are highly specific for placental DNA were devised. Next, it was shown that the methylation status of chorionic villus sample DNA from first trimester pregnancies matched the hypermethylated state of term placenta. Thus there is no indication of a difference in methylation status between early and term pregnancy for the sequences tested. The identified sequences constitute candidate biomarkers for non-invasive prenatal diagnosis of Down syndrome.


Assuntos
Cromossomos Humanos Par 21/metabolismo , Síndrome de Down/diagnóstico , Doenças Fetais/diagnóstico , Placenta/metabolismo , Diagnóstico Pré-Natal/métodos , Biomarcadores/sangue , Metilação de DNA , Primers do DNA , Enzimas de Restrição do DNA , Síndrome de Down/genética , Epigênese Genética , Feminino , Doenças Fetais/genética , Humanos , Gravidez , Regiões Promotoras Genéticas
14.
Prenat Diagn ; 27(9): 824-9, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17604339

RESUMO

OBJECTIVE: Cell free foetal DNA (cff DNA) extracted from maternal plasma is now recognized as a potential source for prenatal diagnosis but the methodology is currently not well standardized. To evaluate different manual and automated DNA extraction methods with a view to developing standards, an International Workshop was performed. METHODS: Three plasma pools from RhD-negative pregnant women, a DNA standard, real-time-PCR protocol, primers and probes for RHD were sent to 12 laboratories and also to one company (Qiagen, Hilden, Germany). In pre-tests, pool 3 showed a low cff DNA concentration, pool 1 showed a higher concentration and pool 2 an intermediate concentration. RESULTS: The QIAamp DSP Virus Kit, the High Pure PCR Template Preparation Kit, an in-house protocol using the QIAamp DNA Blood Mini Kit, the CST genomic DNA purification kit, the Magna Pure LC, the MDx, the M48, the EZ1 and an in-house protocol using magnetic beads for manual and automated extraction were the methods that were able to reliably detect foetal RHD. The best results were obtained with the QIAamp DSP Virus Kit. The QIAamp DNA Blood Mini Kit showed very comparable results in laboratories that followed the manufacturer's protocol and started with > or = 500 microL plasma. One participant using the QIAamp DNA Blood Midi Kit failed to detect reliably RHD in pool 3. CONCLUSIONS: This workshop initiated a standardization process for extraction of cff DNA in maternal plasma. The highest yield was obtained by the QIAamp DSP Virus Kit, a result that will be evaluated in more detail in future studies.


Assuntos
DNA/sangue , DNA/isolamento & purificação , Feto , Testes Genéticos/métodos , Mães , Automação , Feminino , Feto/metabolismo , Testes Genéticos/normas , Humanos , Relações Materno-Fetais , Reação em Cadeia da Polimerase/métodos , Gravidez , Diagnóstico Pré-Natal/métodos , Diagnóstico Pré-Natal/normas
15.
Reprod Biomed Online ; 13(1): 88-95, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16820117

RESUMO

Meiotic recombination was analysed in human fetal oocytes to determine whether recombination errors are associated with abnormal chromosome synapsis. Immunostaining was used to identify the synaptonemal complex (SC, the meiosis-specific proteinaceous structure that binds homologous chromosomes) and the DNA mismatch repair protein, MLH1, that locates recombination foci. It was found that 57.1-74.2% of zygotene oocytes showed fragmentation and/or defective chromosome synapsis. Fewer such abnormal cells occurred at pachytene (15.8-28.9%). MLH1 foci were present from zygotene to diplotene in both normal and abnormal oocytes. However, the proportions of oocytes having MLH1 foci, and mean numbers of foci per oocyte, were both lower in abnormal oocytes. Oocytes with fragmented SC had more foci than those with synaptic anomalies. Analysis of chromosomes 13, 18, 21 and X by fluorescence in-situ hybridization (FISH) did not implicate particular chromosomes in recombination deficiency. These observations indicate that recombination is disturbed in oocytes with SC fragmentation and/or synaptic abnormalities during meiotic prophase I. Such disturbances might be a risk factor for selection of fetal oocytes for atresia, as occurs for homologous chromosome pairing. Recombination errors may potentially increase the risk of abnormal chromosome segregation in oocytes that survive and contribute to the reserve in the mature ovary.


Assuntos
Feto/citologia , Meiose , Oócitos/citologia , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/metabolismo , Feminino , Feto/metabolismo , Humanos , Hibridização in Situ Fluorescente , Técnicas In Vitro , Proteína 1 Homóloga a MutL , Proteínas Nucleares/metabolismo , Oócitos/metabolismo , Recombinação Genética , Complexo Sinaptonêmico/ultraestrutura
16.
Eur J Hum Genet ; 14(11): 1189-94, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16823396

RESUMO

Rett syndrome is a largely sporadic, X-linked neurological disorder with a characteristic phenotype, but which exhibits substantial phenotypic variability. This variability has been partly attributed to an effect of X chromosome inactivation (XCI). There have been conflicting reports regarding incidence of skewed X inactivation in Rett syndrome. In rare familial cases of Rett syndrome, favourably skewed X inactivation has been found in phenotypically normal carrier mothers. We have investigated the X inactivation pattern in DNA from blood and buccal cells of sporadic Rett patients (n=96) and their mothers (n=84). The mean degree of skewing in blood was higher in patients (70.7%) than controls (64.9%). Unexpectedly, the mothers of these patients also had a higher mean degree of skewing in blood (70.8%) than controls. In accordance with these findings, the frequency of skewed (XCI > or =80%) X inactivation in blood was also higher in both patients (25%) and mothers (30%) than in controls (11%). To test whether the Rett patients with skewed X inactivation were daughters of skewed mothers, 49 mother-daughter pairs were analysed. Of 14 patients with skewed X inactivation, only three had a mother with skewed X inactivation. Among patients, mildly affected cases were shown to be more skewed than more severely affected cases, and there was a trend towards preferential inactivation of the paternally inherited X chromosome in skewed cases. These findings, particularly the greater degree of X inactivation skewing in Rett syndrome patients, are of potential significance in the analysis of genotype-phenotype correlations in Rett syndrome.


Assuntos
Síndrome de Rett/genética , Inativação do Cromossomo X , Células Sanguíneas/ultraestrutura , Estudos de Casos e Controles , Pai , Feminino , Genótipo , Humanos , Masculino , Mães , Mucosa Bucal/ultraestrutura , Fenótipo
17.
Gene ; 373: 83-9, 2006 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-16530985

RESUMO

Rett syndrome (RTT; OMIM 312750) is an X-linked dominant neurological disorder, which affects mostly females. It is associated with mutations of the MECP2 gene, codifying for a methyl-CpG DNA binding protein of the MBDs family, sharing the common Methyl Binding Domain. MeCP2 binds single methylated CpG pair and brings transcriptional silencing to the substrate DNA templates. However, around 5-10% of clinically well defined RTT patients do not show any mutations in this gene. Several hypotheses have been postulated to clarify the remaining unexplained RTT cases. We pointed our attention on Kaiso gene. This gene is localized in the Xq23 region and codifies for a protein acting as a methyl-CpG binding protein by using three zinc-finger domains: for this reason it is not strictly related to the MBD family of proteins, even if it may repress transcription of methylated genes as well. To investigate the potential association of Kaiso disfunction with pathogenesis of Rett syndrome, we approached the analysis at two different levels. Primarily, we performed an itemized murine brain expression analysis of Kaiso gene. Expression data and localization made it an excellent candidate as additional causative gene for MECP2 negative, classical RTT patients. On the bases of this data a detailed mutational analysis of 44 patients from Spanish, UK, and Italian archives has been performed to the coding region of Kaiso. No mutation was found while a very frequent polymorphism was identified and characterized. Our study suggests that this gene is not implicated in the RTT molecular pathogenesis, but additional analyses are needed to exclude it as causative gene for X-linked mental retardation disorders.


Assuntos
Encéfalo/metabolismo , Síndrome de Rett/genética , Fatores de Transcrição/genética , Animais , Análise Mutacional de DNA , Feminino , Genes Ligados ao Cromossomo X , Humanos , Masculino , Camundongos , Polimorfismo Genético
18.
Eur J Hum Genet ; 13(10): 1121-30, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16077736

RESUMO

We aimed to improve the understanding of genotype-phenotype correlations in Rett syndrome (RS) by adopting a novel approach to categorising phenotypic dimensions - separating typicality of presentation, outcome severity and age of onset - and by classifying MECP2 mutations strictly by predicted functional attributes. MECP2 mutation screening results were available on 190 patients with a clinical diagnosis of RS (140 cases with classic RS, 50 with atypical RS). 135 cases had identified mutations. Of the 140 patients, 116 with classic RS (82.9%) had an identified mutation compared with 19 of 50 patients (38%) with an atypical presentation. Cases with early onset of regression and seizures, and those with clinical features that might indicate alternative aetiologies, were less likely to have mutations. Individuals with late truncating mutations had a less typical presentation than cases with missense and early truncating mutations, presumably reflecting greater residual function of MECP2 protein. Individuals with early truncating mutations had a more severe outcome than cases with missense and late truncating mutations. These findings held when restricting the analysis to cases over 15 years of age and classic cases only. Previous findings of variation in severity among the common mutations were confirmed. The approach to phenotypic and genotypic classification adopted here allowed us to identify genotype-phenotype associations in RS that may aid our understanding of pathogenesis and also contribute to clinical knowledge on the impact of different types of mutations.


Assuntos
Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Proteínas Repressoras/genética , Síndrome de Rett/genética , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Análise Mutacional de DNA , Epilepsia/genética , Feminino , Genótipo , Humanos , Lactente , Proteína 2 de Ligação a Metil-CpG , Mutação de Sentido Incorreto , Fenótipo
19.
Hum Mutat ; 25(3): 324, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15712379

RESUMO

In 1999, mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2) were first reported in patients with Rett syndrome (RTT). The MECP2 gene is located at Xq28 and consists of 4 exons. About 80-90 % of the classic RTT patients harbor mutations in the coding region of MECP2, while the molecular cause is unknown in the remaining 10-20%. Several groups have searched for large rearrangements within the MECP2 and the results indicate that a fraction of MECP2-negative RTT cases has large deletions of the MECP2. In this study we have used the Multiplex Ligation-dependent Probe Amplification (MLPA) technique to screen 45 RTT patients, who have previously been tested negative for mutations in the coding region of MECP2. The MECP2-MLPA is a semi-quantitative multiplex PCR approach. It determines the relative number of copies of each MECP2 exon. With this approach we detected seven RTT patients with genomic deletions and further characterized the deletions using real time quantitative PCR (qPCR) and long-range PCR. The seven patients were given a severity score and their X chromosome inactivation profiles were determined in order to identify a possible genotype-phenotype correlation. The results from this study indicate that large deletions in MECP2 cause classic RTT.


Assuntos
Rearranjo Gênico , Proteína 2 de Ligação a Metil-CpG/genética , Síndrome de Rett/genética , Deleção de Sequência , Adolescente , Adulto , Criança , Cromossomos Humanos X/genética , Análise Mutacional de DNA , Éxons/genética , Feminino , Humanos , Mutagênese Insercional , Reação em Cadeia da Polimerase/métodos , Síndrome de Rett/diagnóstico , Índice de Gravidade de Doença , Inativação do Cromossomo X
20.
Eur J Hum Genet ; 12(12): 993-1000, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15367911

RESUMO

In a search for potential infertility loci, which might be revealed by clustering of chromosomal breakpoints, we compiled 464 infertile males with a balanced rearrangement from Mendelian Cytogenetics Network database (MCNdb) and compared their karyotypes with those of a Danish nation-wide cohort. We excluded Robertsonian translocations, rearrangements involving sex chromosomes and common variants. We identified 10 autosomal bands, five of which were on chromosome 1, with a large excess of breakpoints in the infertility group. Some of these could potentially harbour a male-specific infertility locus. However, a general excess of breakpoints almost everywhere on chromosome 1 was observed among the infertile males: 26.5 versus 14.5% in the cohort. This excess was observed both for translocation and inversion carriers, especially pericentric inversions, both for published and unpublished cases, and was significantly associated with azoospermia. The largest number of breakpoints was reported in 1q21; FISH mapping of four of these breakpoints revealed that they did not involve the same region at the molecular level. We suggest that chromosome 1 harbours a critical domain whose integrity is essential for male fertility.


Assuntos
Aberrações Cromossômicas , Cromossomos Humanos Par 1 , Infertilidade Masculina/genética , Inversão Cromossômica , Humanos , Masculino , Oligospermia/genética , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA