Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 26: 101279, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31349119

RESUMO

The phagocyte NADPH oxidase (the NOX2 complex) generates superoxide, the precursor to reactive oxygen species (ROS). ROS possess both antimicrobial and immunoregulatory function. Inactivating mutations in alleles of the NOX2 complex cause chronic granulomatous disease (CGD), characterized by an enhanced susceptibility to infections and autoimmune diseases such as Systemic lupus erythematosus (SLE). The latter is characterized by insufficient removal of dead cells, resulting in an autoimmune response against components of the cell's nucleus when non-cleared apoptotic cells lose their membrane integrity and present autoantigenic molecules in an inflammatory context. Here we aimed to shed light on the role of the NOX2 complex in handling of secondary necrotic cells (SNECs) and associated consequences for inflammation and autoimmunity during lupus. We show that individuals with SLE and CGD display accumulation of SNECs in blood monocytes and neutrophils. In a CGD phenotypic mouse strain (Ncf1** mice) build-up of SNECs in Ly6CHI blood monocytes was connected with a delayed degradation of the phagosomal cargo and accompanied by production of inflammatory mediators. Treatment with H2O2 or activators of ROS-formation reconstituted phagosomal abundance of SNECs to normal levels. Induction of experimental lupus further induced increased antibody-dependent uptake of SNECs into neutrophils. Lupus-primed Ncf1** neutrophils took up more SNECs than wild type neutrophils, whereas SNEC-accumulation in regulatory Ly6C-/LO monocytes was lower in Ncf1**mice. We deduce that the inflammatory rerouting of immune-stimulatory necrotic material into inflammatory phagocyte subsets contributes to the connection between low ROS production by the NOX2 complex and SLE.


Assuntos
NADPH Oxidase 2/metabolismo , Fagócitos/metabolismo , Animais , Autoanticorpos/imunologia , Citocinas/metabolismo , Concentração de Íons de Hidrogênio , Mediadores da Inflamação/metabolismo , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , NADPH Oxidase 2/genética , Necrose/genética , Necrose/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fagócitos/imunologia , Fagocitose/genética , Fagocitose/imunologia , Fagossomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de IgG/metabolismo
2.
JCI Insight ; 2(10)2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28515366

RESUMO

Many effector mechanisms of neutrophils have been implicated in the pathogenesis of systemic lupus erythematosus (SLE). Neutrophil extracellular traps (NETs) have been assigned a particularly detrimental role. Here we investigated the functional impact of neutrophils and NETs on a mouse model of lupus triggered by intraperitoneal injection of the cell death-inducing alkane pristane. Pristane-induced lupus (PIL) was aggravated in 2 mouse strains with impaired induction of NET formation, i.e., NOX2-deficient (Ncf1-mutated) and peptidyl arginine deiminase 4-deficient (PAD4-deficient) mice, as seen from elevated levels of antinuclear autoantibodies (ANAs) and exacerbated glomerulonephritis. We observed a dramatically reduced ability to form pristane-induced NETs in vivo in both Ncf1-mutated and PAD4-deficient mice, accompanied by higher levels of inflammatory mediators in the peritoneum. Similarly, neutropenic Mcl-1ΔMyelo mice exhibited higher levels of ANAs, which indicates a regulatory function in lupus of NETs and neutrophils. Blood neutrophils from Ncf1-mutated and human individuals with SLE exhibited exuberant spontaneous NET formation. Treatment with specific chemical NOX2 activators induced NET formation and ameliorated PIL. Our findings suggest that aberrant NET is one of the factors promoting experimental lupus-like autoimmunity by uncontrolled release of inflammatory mediators.

3.
PLoS One ; 11(5): e0155936, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27227821

RESUMO

BACKGROUND: To facilitate the development of therapies for rheumatoid arthritis (RA), the Innovative Medicines Initiative BTCure has combined the experience from several laboratories worldwide to establish a series of protocols for different animal models of arthritis that reflect the pathogenesis of RA. Here, we describe chronic pristane-induced arthritis (PIA) model in DA rats, and provide detailed instructions to set up and evaluate the model and for reporting data. METHODS: We optimized dose of pristane and immunization procedures and determined the effect of age, gender, and housing conditions. We further assessed cage-effects, reproducibility, and frequency of chronic arthritis, disease markers, and efficacy of standard and novel therapies. RESULTS: Out of 271 rats, 99.6% developed arthritis after pristane-administration. Mean values for day of onset, day of maximum arthritis severity and maximum clinical scores were 11.8±2.0 days, 20.3±5.1 days and 34.2±11 points on a 60-point scale, respectively. The mean frequency of chronic arthritis was 86% but approached 100% in long-term experiments over 110 days. Pristane was arthritogenic even at 5 microliters dose but needed to be administrated intradermally to induce robust disease with minimal variation. The development of arthritis was age-dependent but independent of gender and whether the rats were housed in conventional or barrier facilities. PIA correlated well with weight loss and acute phase reactants, and was ameliorated by etanercept, dexamethasone, cyclosporine A and fingolimod treatment. CONCLUSIONS: PIA has high incidence and excellent reproducibility. The chronic relapsing-remitting disease and limited systemic manifestations make it more suitable than adjuvant arthritis for long-term studies of joint-inflammation and screening and validation of new therapeutics.


Assuntos
Artrite Experimental/induzido quimicamente , Artrite Experimental/patologia , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/patologia , Modelos Animais de Doenças , Imunossupressores/toxicidade , Terpenos/toxicidade , Animais , Feminino , Masculino , Ratos
4.
Antioxid Redox Signal ; 23(5): 446-59, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-24359237

RESUMO

SIGNIFICANCE: New insights into the role of reactive oxygen species (ROS) show that activators of the phagocyte NADPH oxidase 2 (NOX2) complex have the potential to be therapeutic in autoimmune and inflammatory conditions. It is, however, essential to elucidate the consequence of targeting the NOX2 complex, as it might lead to different outcomes depending on disease context and specificity, dose, and timing of ROS production. RECENT ADVANCES: Increasing evidence is suggesting that the role of the NOX2 complex is far more complex than previously anticipated. In addition to the well-described antimicrobial response, ROS also have immune and inflammatory regulatory effects. Compounds increasing NOX2-dependent ROS production have been shown to be effective both in preventing and in treating inflammatory manifestations in animal models of autoimmune diseases. Altogether, these results suggest the possibility of activating the NOX2 complex for the treatment of autoimmune inflammatory diseases while restoring and maintaining a balanced ROS regulation. CRITICAL ISSUES: The complexity of the NOX system and the derived ROS is important and must be considered when designing the programs for the development of NOX2-activating drugs, as well as for validation of selected hits, to successfully identify substances effective in treating inflammatory and autoimmune conditions. In addition, it is important to consider the complex downstream immunological effects and safety for drugs that increase the production of ROS. FUTURE DIRECTIONS: There is a strong potential for the development of ROS-inducing drugs, targeting the NOX2 complex, which are effective and safe, for the treatment of inflammatory autoimmune disorders. In such drug development, one must carefully investigate the pharmaceutical properties, including both efficacy and safety of the drugs. In addition, the immunological pathways of this new treatment strategy need careful examination.


Assuntos
Glicoproteínas de Membrana/farmacologia , NADPH Oxidases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Doenças Autoimunes/patologia , Ativação Enzimática/efeitos dos fármacos , Humanos , Inflamação/patologia , Glicoproteínas de Membrana/agonistas , NADPH Oxidase 2 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/imunologia
5.
Antioxid Redox Signal ; 21(16): 2231-45, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24787605

RESUMO

AIMS: Chronic granulomatous disease (CGD) is a primary immunodeficiency caused by mutations in the phagocyte reactive oxygen species (ROS)-producing NOX2 enzyme complex and characterized by recurrent infections associated with hyperinflammatory and autoimmune manifestations. A translational, comparative analysis of CGD patients and the corresponding ROS-deficient Ncf1(m1J) mutated mouse model was performed to reveal the molecular pathways operating in NOX2 complex deficient inflammation. RESULTS: A prominent type I interferon (IFN) response signature that was accompanied by elevated autoantibody levels was identified in both mice and humans lacking functional NOX2 complex. To further underline the systemic lupus erythematosus (SLE)-related autoimmune process, we show that naïve Ncf1(m1J) mutated mice, similar to SLE patients, suffer from inflammatory kidney disease with IgG and C3 deposits in the glomeruli. Expression analysis of germ-free Ncf1(m1J) mutated mice reproduced the type I IFN signature, enabling us to conclude that the upregulated signaling pathway is of endogenous origin. INNOVATION: Our findings link the previously unexplained connection between ROS deficiency and increased susceptibility to autoimmunity by the discovery that activation of IFN signaling is a major pathway downstream of a deficient NOX2 complex in both mice and humans. CONCLUSION: We conclude that the lack of phagocyte-derived oxidative burst is associated with spontaneous autoimmunity and linked with type I IFN signature in both mice and humans.


Assuntos
Doença Granulomatosa Crônica/genética , Imunoglobulina G/imunologia , Interferon-alfa/genética , Interferon beta/genética , NADPH Oxidases/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/imunologia , Adolescente , Adulto , Animais , Autoimunidade/imunologia , Criança , Pré-Escolar , Complemento C3/imunologia , Modelos Animais de Doenças , Feminino , Expressão Gênica , Doença Granulomatosa Crônica/imunologia , Humanos , Interferon-alfa/imunologia , Interferon beta/imunologia , Glomérulos Renais/imunologia , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , NADPH Oxidase 2 , NADPH Oxidases/imunologia , Adulto Jovem
6.
Arthritis Rheum ; 64(11): 3594-603, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22886420

RESUMO

OBJECTIVE: To identify genetic factors driving pathogenic autoantibody formation in collagen-induced arthritis (CIA), a mouse model of rheumatoid arthritis (RA), in order to better understand the etiology of RA and identify possible new avenues for therapeutic intervention. METHODS: We performed a genome-wide analysis of quantitative trait loci controlling autoantibody to type II collagen (anti-CII), anti-citrullinated protein antibody (ACPA), and rheumatoid factor (RF). To identify loci controlling autoantibody production, we induced CIA in a heterogeneous stock-derived mouse cohort, with contribution of 8 inbred mouse strains backcrossed to C57BL/10.Q. Serum samples were collected from 1,640 mice before arthritis onset and at the peak of the disease. Antibody concentrations were measured by standard enzyme-linked immunosorbent assay, and linkage analysis was performed using a linear regression-based method. RESULTS: We identified loci controlling formation of anti-CII of different IgG isotypes (IgG1, IgG3), antibodies to major CII epitopes (C1, J1, U1), antibodies to a citrullinated CII peptide (citC1), and RF. The anti-CII, ACPA, and RF responses were all found to be controlled by distinct genes, one of the most important loci being the immunoglobulin heavy chain locus. CONCLUSION: This comprehensive genetic analysis of autoantibody formation in CIA demonstrates an association not only of anti-CII, but interestingly also of ACPA and RF, with arthritis development in mice. These results underscore the importance of non-major histocompatibility complex genes in controlling the formation of clinically relevant autoantibodies.


Assuntos
Artrite Experimental/genética , Artrite Experimental/imunologia , Autoanticorpos/genética , Autoanticorpos/imunologia , Animais , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Autoanticorpos/sangue , Colágeno Tipo II/imunologia , Modelos Animais de Doenças , Feminino , Estudo de Associação Genômica Ampla , Imunoglobulina G/sangue , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Masculino , Camundongos , Camundongos Endogâmicos A , Camundongos Endogâmicos AKR , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Endogâmicos DBA , Peptídeos Cíclicos/imunologia , Locos de Características Quantitativas/imunologia , Fator Reumatoide/imunologia , Especificidade da Espécie
7.
Am J Pathol ; 181(1): 141-50, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22642907

RESUMO

The suppressive role of phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX2) complex-derived reactive oxygen species (ROS) in adaptive immunity-driven arthritis models is well established. In this study, we aimed to investigate the role of NOX2 complex-derived ROS in a model of innate immunity-driven arthritis and to identify the ROS-regulated innate receptors that control arthritis. We used collagen antibody-induced arthritis (CAIA), which is a T and B lymphocyte-independent model of the effector phase of arthritis and is induced by well-defined monoclonal arthritogenic antibodies and enhanced by injection of lipopolysaccharide (LPS). CAIA was induced in both wild-type and Ncf1 mutant mice that lack phagocyte oxidative burst, and stimulated with LPS and other agents to activate innate immune responses. We found that both LPS and lipomannan enhanced CAIA more potently in the presence of functional phagocyte ROS production than in its absence. The ROS-dependent enhancement of CAIA was regulated by TLR2, but not by TLR4 stimulation, and was driven by granulocytes, whereas macrophages did not contribute to the phenotype. In addition, we report that collagen-induced arthritis was not affected by the functionality of the TLR4. We report that TLR2 signaling as an important ROS-regulated proinflammatory pathway leads to severe neutrophil-dependent inflammation in murine CAIA and conclude that the TLR2 pathway is modulated by phagocyte ROS to stimulate the development of arthritis.


Assuntos
Artrite Experimental/imunologia , Granulócitos/imunologia , Espécies Reativas de Oxigênio/imunologia , Receptor 2 Toll-Like/imunologia , Envelhecimento/imunologia , Animais , Artrite Experimental/patologia , Autoimunidade/imunologia , Colágeno/imunologia , Imunidade Inata , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Masculino , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Mutantes , NADPH Oxidase 2 , NADPH Oxidases/imunologia , Fagócitos/imunologia , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória/imunologia , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/agonistas , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/imunologia
8.
J Immunol ; 188(10): 5003-11, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22491245

RESUMO

Chronic granulomatous disease (CGD) is an inherited disorder characterized by recurrent life-threatening bacterial and fungal infections. CGD results from defective production of reactive oxygen species by phagocytes caused by mutations in genes encoding the NADPH oxidase 2 (NOX2) complex subunits. Mice with a spontaneous mutation in Ncf1, which encodes the NCF1 (p47(phox)) subunit of NOX2, have defective phagocyte NOX2 activity. These mice occasionally develop local spontaneous infections by Staphylococcus xylosus or by the common CGD pathogen Staphylococcus aureus. Ncf1 mutant mice were more susceptible to systemic challenge with these bacteria than were wild-type mice. Transgenic Ncf1 mutant mice harboring the wild-type Ncf1 gene under the human CD68 promoter (MN(+) mice) gained the expression of NCF1 and functional NOX2 activity specifically in monocytes/macrophages, although minimal NOX2 activity was also detected in some CD11b(+)Ly6G(+) cells defined as neutrophils. MN(+) mice did not develop spontaneous infection and were more resistant to administered staphylococcal infections compared with MN(-) mice. Most strikingly, MN(+) mice survived after being administered Burkholderia cepacia, an opportunistic pathogen in CGD patients, whereas MN(-) mice died. Thus, monocyte/macrophage expression of functional NCF1 protected against spontaneous and administered bacterial infections.


Assuntos
Glicoproteínas de Membrana/biossíntese , Monócitos/enzimologia , Monócitos/microbiologia , NADPH Oxidases/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Infecções Estafilocócicas/prevenção & controle , Animais , Antibacterianos/farmacologia , Infecções por Burkholderia/enzimologia , Infecções por Burkholderia/microbiologia , Infecções por Burkholderia/prevenção & controle , Burkholderia cepacia/imunologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Camundongos Transgênicos , Monócitos/imunologia , NADPH Oxidase 2 , NADPH Oxidases/fisiologia , Infecções Estafilocócicas/enzimologia , Infecções Estafilocócicas/microbiologia
9.
Am J Pathol ; 179(5): 2490-500, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21933654

RESUMO

We established and characterized an arthritis mouse model using collagen type II (CII) and a thermo-responsive polymer, poly(N-isopropylacrylamide) (PNiPAAm). The new PNiPAAm adjuvant is TLR-independent, as all immunized TLR including MyD88-deficient mice developed an anti-CII response. Unlike other adjuvants, PNiPPAm did not skew the cytokine response (IL-1ß, IFN-γ, IL-4, and IL-17), as there was no immune deviation towards any one type of immune spectrum after immunization with CII/PNiPPAm. Hence, using PNiPAAm, we studied the actual immune response to the self-protein, CII. We observed arthritis and autoimmunity development in several murine strains having different major histocompatibility complex (MHC) haplotypes after CII/PNiPAAm immunization but with a clear MHC association pattern. Interestingly, C57Bl/6 mice did not develop CII-induced arthritis, with PNiPAAm demonstrating absolute requirement for a classical adjuvant. Presence of a gene (Ncf1) mutation in the NADPH oxidation complex has a profound influence in arthritis and using PNiPAAm we could show that the high CIA severity in Ncf1 mutated mice is independent of any classical adjuvant. Macrophages, neutrophils, eosinophils, and osteoclasts but not mast cells dominated the inflamed joints. Furthermore, arthritis induction in the adjuvant-free, eosinophil-dependent Vß12 DBA/1 mice could be shown to develop arthritis independent of eosinophils using CII/PNiPAAm. Thus, biocompatible and biodegradable PNiPAAm offers unique opportunities to study actual autoimmunity independent of TLR and a particular cytokine phenotype profile.


Assuntos
Acrilamidas/imunologia , Artrite Reumatoide/imunologia , Colágeno Tipo II/imunologia , Antígenos de Histocompatibilidade Classe II/genética , NADPH Oxidases/genética , Receptores Toll-Like/imunologia , Resinas Acrílicas , Adjuvantes Imunológicos , Animais , Anticorpos/metabolismo , Formação de Anticorpos , Artrite Reumatoide/genética , Colágeno Tipo II/efeitos adversos , Citocinas/metabolismo , Imunoglobulina G/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Mutação/imunologia , Polímeros
10.
Hum Mol Genet ; 20(15): 3031-41, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21565963

RESUMO

Resolving the genetic basis of complex diseases like rheumatoid arthritis will require knowledge of the corresponding diseases in experimental animals to enable translational functional studies. Mapping of quantitative trait loci in mouse models of arthritis, such as collagen-induced arthritis (CIA), using F(2) crosses has been successful, but can resolve loci only to large chromosomal regions. Using an inbred-outbred cross design, we identified and fine-mapped CIA loci on a genome-wide scale. Heterogeneous stock mice were first intercrossed with an inbred strain, B10.Q, to introduce an arthritis permitting MHCII haplotype. Homozygous H2(q) mice were then selected to set up an F(3) generation with fixed major histocompatibility complex that was used for arthritis experiments. We identified 26 loci, 18 of which are novel, controlling arthritis traits such as incidence of disease, severity and time of onset and fine-mapped a number of previously mapped loci.


Assuntos
Artrite Experimental/genética , Artrite Reumatoide/genética , Modelos Animais de Doenças , Animais , Cruzamentos Genéticos , Feminino , Genótipo , Haplótipos , Complexo Principal de Histocompatibilidade/genética , Masculino , Camundongos , Locos de Características Quantitativas/genética
11.
Antioxid Redox Signal ; 14(12): 2373-83, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21275845

RESUMO

The Ncf1 gene, encoding the P47(PHOX) protein that regulates production of reactive oxygen species (ROS) by the phagocyte NADPH oxidase (NOX2) complex, is associated with autoimmunity and arthritis severity in rats. We have now identified that the single-nucleotide polymorphism (SNP) resulting in an M153T amino acid substitution mediates arthritis resistance and thus explains the molecular polymorphism underlying the earlier identified Ncf1 gene effect. We identified the SNP in position 153 to regulate ROS production using COS(PHOX) cells transfected with mutated Ncf1. To determine the role of this SNP for control of arthritis, we used the Wistar strain, identified to carry only the postulated arthritis resistant SNP in position 153. When this Ncf1 allele was backcrossed to the arthritis susceptible DA strain, both granulocyte ROS production and arthritis resistance were restored. Position 153 is located in the hinge region between the PX and SH3 domains of P47(PHOX). Mutational analysis of this position revealed a need for an -OH group in the side chain but we found no evidence for phosphorylation. The polymorphism did not affect assembly of the P47(PHOX)/P67(PHOX) complex in the cytosol or membrane localization, but is likely to operate downstream of assembly, affecting activity of the membrane NOX2 complex.


Assuntos
Artrite/genética , Artrite/fisiopatologia , NADPH Oxidases/genética , Polimorfismo de Nucleotídeo Único , Explosão Respiratória/fisiologia , Animais , Artrite/patologia , Células COS , Chlorocebus aethiops , Humanos , NADPH Oxidases/metabolismo , Fagossomos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
12.
Eur J Immunol ; 41(2): 403-12, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21268010

RESUMO

It is widely believed that DC, but not macrophages, prime naïve T cells in vivo. Here, we investigated the ability of CD68-expressing cells (commonly defined as macrophages) in priming autoreactive T cells and initiating collagen-induced arthritis (CIA) in the mouse. For this purpose, a transgenic mouse was developed (MBQ mouse) where macrophages exclusively expressed the MHC class II H2-A(q) (A(q)) on an H2-A(p) (A(p)) background. A(q), but not A(p) expression mediates susceptibility to CIA through presentation of type II collagen (CII) to T cells. CIA severity is enhanced by a mutation in the Ncf1 gene, impairing reactive oxygen species (ROS) production by the phagocyte NADPH oxidase (NOX2) complex. Expression of functional Ncf1 on macrophages was previously shown to protect from severe CIA. To study the effect of ROS on macrophage-mediated priming of T cells, the Ncf1 mutation was introduced in the MBQ mouse. Upon CII immunization, Ncf1-mutated MBQ mice, but not Ncf1 wild-type MBQ mice nor Ncf1-mutated A(p) mice, activated autoreactive T cells and developed CIA. These findings demonstrate for the first time that macrophages can initiate arthritis and that the process is negatively regulated by ROS produced via the NOX2 complex.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Artrite Experimental/imunologia , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/imunologia , Animais , Animais Congênicos , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Artrite Experimental/genética , Artrite Experimental/patologia , Colágeno Tipo II/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Interferon gama/metabolismo , Interferon gama/farmacologia , Interleucina-2/metabolismo , Linfonodos/citologia , Linfonodos/imunologia , Ativação Linfocitária/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , NADPH Oxidases/genética , Regiões Promotoras Genéticas/genética , Baço/citologia , Baço/imunologia , Linfócitos T/metabolismo , Vacinação
13.
Antioxid Redox Signal ; 15(8): 2197-208, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20919938

RESUMO

Reactive oxygen species (ROS) are a heterogeneous group of highly reactive molecules that oxidize targets in a biologic system. During steady-state conditions, ROS are constantly produced in the electron-transport chain during cellular respiration and by various constitutively active oxidases. ROS production can also be induced by activation of the phagocyte NADPH oxidase 2 (NOX2) complex in a process generally referred to as an oxidative burst. The induced ROS have long been considered proinflammatory, causing cell and tissue destruction. Recent findings have challenged this inflammatory role of ROS, and today, ROS are also known to regulate immune responses and cell proliferation and to determine T-cell autoreactivity. NOX2-derived ROS have been shown to suppress antigen-dependent T-cell reactivity and remarkably to reduce the severity of experimental arthritis in both rats and mice. In this review, we discuss the role of ROS and the NOX2 complex as suppressors of autoimmunity, inflammation, and arthritis.


Assuntos
NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Autoimunidade/genética , Autoimunidade/fisiologia , Humanos , Inflamação/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , NADPH Oxidase 2 , NADPH Oxidases/genética
14.
Ann Rheum Dis ; 69(8): 1527-32, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20542961

RESUMO

OBJECTIVES: The novel small molecule 9-chloro-2,3-dimethyl-6-(N,N-dimethylaminoethylamino-2-oxoethyl)-6H-indolo[2,3-b] quinoxaline (Rabeximod) reduces severity of arthritis in rodent models of rheumatoid arthritis (RA) and multiple sclerosis (MS). This study aimed to investigate the cellular target in vivo. METHODS: Collagen antibody-induced arthritis (CAIA) is induced by monoclonal collagen type II antibodies and enhanced by lipopolysaccharide. It was investigated how and when Rabeximod operates on inflammatory cells after stimulation of either Toll-like receptor (TLR)4 (lipopolysaccharide) or TLR2 (lipomannan) in mice lacking functional signalling through TLR4 due to a spontaneous deletion of the Tlr4 gene. RESULTS: Rabeximod efficiently prevented arthritis during the time window when TLR2 or TLR4 ligands activate inflammatory macrophages. The effect operated downstream of TLR activation as Rabeximod was highly therapeutic in CAIA enhanced through TLR2 stimuli in TLR4 deficient mice. In addition, it was found that the arthritis ameliorating effect of Rabeximod was time dependent, since inhibition of tumour necrosis factor alpha production from macrophages in vitro was more pronounced if administered close to stimulation. CONCLUSIONS: Rabeximod suppresses arthritis by preventing activation of inflammatory cells, most likely macrophages, in a time dependent fashion, downstream of TLR2 and TLR4 stimulation.


Assuntos
Antirreumáticos/uso terapêutico , Artrite Experimental/tratamento farmacológico , Indóis/uso terapêutico , Ativação de Macrófagos/efeitos dos fármacos , Quinoxalinas/uso terapêutico , Animais , Antirreumáticos/farmacologia , Artrite Experimental/imunologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Avaliação Pré-Clínica de Medicamentos , Indóis/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Masculino , Camundongos , Camundongos Knockout , Quinoxalinas/farmacologia , Receptor 2 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/biossíntese
15.
Arthritis Res Ther ; 11(3): 226, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19490601

RESUMO

For a long time, genetic studies of complex diseases were most successfully conducted in animal models. However, the field of genetics is now rapidly evolving, and human genetics has also started to produce strong candidate genes for complex diseases. This raises the question of how to continue gene-finding attempts in animals and how to use animal models to enhance our understanding of gene function. In this review we summarize the uses and advantages of animal studies in identification of disease susceptibility genes, focusing on rheumatoid arthritis. We are convinced that animal genetics will remain a valuable tool for the identification and investigation of pathways that lead to disease, well into the future.


Assuntos
Artrite Reumatoide/genética , Modelos Animais de Doenças , Predisposição Genética para Doença/genética , Animais , Artrite Reumatoide/etiologia , Humanos , Valor Preditivo dos Testes
16.
J Immunol ; 183(2): 874-81, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19553535

RESUMO

Reactive oxygen species (ROS) are important in the immune defense against invading pathogens, but they are also key molecules in the regulation of inflammatory reactions. Low levels of ROS production due to a polymorphism in the neutrophil cytosolic factor 1 (Ncf1) gene are associated with autoimmunity and arthritis severity in mouse models induced with adjuvant. We established an adjuvant-free arthritis model in which disease is induced by injection of the autoantigen collagen type II (CII) and depends on IL-5-producing T cells and eosinophils. In addition, the transgenic expression of mutated mouse CII allowed us to investigate an autoreactive immune response to an autologous Ag and by that natural tolerance mechanism. We show that a deficient ROS production, due to a spontaneous mutation in Ncf1, leads to increased autoantibody production and expansion of IL-33R-expressing T cells, impaired T cell tolerance toward tissue-specific CII, and severe arthritis in this unique model without disturbing adjuvant effects. These results demonstrate that the insufficient production of ROS promotes the breakdown of immune tolerance and development of autoimmune and adjuvant-free arthritis through an IL-5- and IL33R-dependent T cell activation pathway.


Assuntos
Artrite Experimental/etiologia , Interleucina-5/metabolismo , NADPH Oxidases/genética , Receptores de Interleucina-1/metabolismo , Receptores de Interleucina/metabolismo , Explosão Respiratória/fisiologia , Linfócitos T/patologia , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/imunologia , Colágeno Tipo II/administração & dosagem , Colágeno Tipo II/efeitos adversos , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33 , Interleucinas , Camundongos , Camundongos Endogâmicos DBA , Camundongos Knockout , NADPH Oxidases/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/imunologia
17.
Trends Immunol ; 30(5): 201-8, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19356981

RESUMO

For a long time, reactive oxygen species (ROS) produced by the phagocyte NADPH oxidase (NOX2) complex have been considered harmful mediators of inflammation owing to their highly reactive nature. However, there are an increasing number of findings suggesting that ROS produced by the NOX2 complex are anti-inflammatory and prevent autoimmune responses, thus challenging existing dogma. ROS might not only be produced as a mechanism to eradicate invading pathogens, but rather as a means by which to fine-tune the inflammatory response, depending on when, where and at what amounts they are produced. In this review, we aim to describe the current findings highlighting ROS as regulators of autoimmune inflammation, focusing on autoimmune arthritis.


Assuntos
Doenças Autoimunes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Doenças Autoimunes/imunologia , Humanos , Modelos Biológicos , NADPH Oxidases/fisiologia , Oxirredução , Fagócitos/metabolismo , Espécies Reativas de Oxigênio/imunologia , Linfócitos T/fisiologia
18.
J Immunol ; 182(7): 4183-91, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19299716

RESUMO

Permanent exposure to pathogens requires decisions toward tolerance or immunity as a prime task of dendritic cells. The molecular mechanisms preventing uncontrolled immune responses are not completely clear. We investigated the regulatory function of Ncf1, an organizing protein of NADPH oxidase, in the signaling cascade of Toll-like receptors. TLR9-stimulated spleen cells from both Ncf1-deficient and B10.Q mice with a point mutation in exon 8 of Ncf1 exhibited increased IL-12p70 secretion compared with controls. This finding was restricted to stimulatory CpG2216 and not induced by CpG2088. Because only CpG/TLR9-induced IL-12p70 was regulated by Ncf1, we used TRIF(-/-) and MyD88(-/-) cells to show that TLR9/MyD88 was primarily affected. Interestingly, additional experiments revealed that spleen cells from NOX2/gp91(phox)-deficient mice and the blocking of electron transfer by diphenylene iodonium had no influence on CpG-induced IL-12p70, confirming an NADPH oxidase-independent function of Ncf1. Finally, proving the in vivo relevance CpG adjuvant-guided OVA immunization resulted in a strong augmentation of IL-12p70-dependent Th1 IFN-gamma response only in Ncf1-deficient mice. These data suggest for the first time an important role for Ncf1 in the fine tuning of the TLR9/MyD88 pathway in vitro and in vivo that is independent of its role as an activator of NOX2.


Assuntos
Células Dendríticas/imunologia , Retroalimentação Fisiológica/imunologia , Interleucina-12/imunologia , NADPH Oxidases/imunologia , Transdução de Sinais/imunologia , Receptor Toll-Like 9/imunologia , Animais , Células Dendríticas/metabolismo , Citometria de Fluxo , Interleucina-12/genética , Interleucina-12/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , RNA Mensageiro/análise , Espécies Reativas de Oxigênio/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor Toll-Like 9/metabolismo
19.
J Immunol ; 182(7): 4432-8, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19299744

RESUMO

We here present the first genetic fine mapping of experimental autoimmune neuritis (EAN), the animal model of Guillain-Barré syndrome, in a rat advanced intercross line. We identified and refined a total of five quantitative trait loci on rat chromosomes 4, 10, and 12 (RNO4, RNO10, RNO12), showing linkage to splenic IFN-gamma secretion and disease severity. All quantitative trait loci were shared with other models of complex inflammatory diseases. The quantitative trait locus showing strongest linkage to clinical disease was Ean6 and spans 4.3 Mb on RNO12, harboring the neutrophil cytosolic factor 1 (Ncf1) among other genes. Polymorphisms in Ncf1, a member of the NADPH oxidase complex, have been associated with disease regulation in experimental arthritis and encephalomyelitis. We therefore tested the Ncf1 pathway by treating rats with a NADPH oxidase complex activator and ameliorated EAN compared the oil-treated control group. By proving the therapeutic effect of stimulating the NADPH oxidase complex, our data strongly suggest the first identification of a gene regulating peripheral nervous system inflammation. Taken together with previous reports, our findings suggest a general role of Ncf1 and oxidative burst in pathogenesis of experimental autoimmune animal models.


Assuntos
Mapeamento Cromossômico , NADPH Oxidases/genética , Neurite Autoimune Experimental/genética , Neurite Autoimune Experimental/patologia , Animais , Autoanticorpos/sangue , Autoanticorpos/imunologia , Autoantígenos/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Ligação Genética , Genótipo , Síndrome de Guillain-Barré/genética , Síndrome de Guillain-Barré/imunologia , Síndrome de Guillain-Barré/patologia , Interferon gama/imunologia , Interferon gama/metabolismo , Masculino , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/imunologia , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/imunologia , NADH NADPH Oxirredutases/metabolismo , Neurite Autoimune Experimental/imunologia , Fitol/farmacologia , Polimorfismo Genético , Locos de Características Quantitativas , Ratos , Explosão Respiratória/fisiologia
20.
Arthritis Rheum ; 58(7): 2000-11, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18576344

RESUMO

OBJECTIVE: To develop a new mouse model for arthritis using cartilage oligomeric matrix protein (COMP) and to study the role of major histocompatibility complex (MHC) and Ncf1 genes in COMP-induced arthritis (COMPIA). METHODS: Native (pentameric) and denatured (monomeric) COMP purified from a rat chondrosarcoma was injected into mice with Freund's adjuvant to induce arthritis. C3H.NB, C3H.Q, B10.P, B10.Q, (B10.Q x DBA/1)F1, (BALB/c x B10.Q)F1, Ncf1 mutated, H-2Aq, H-2Ap, and human DR4+-transgenic mice were used. Anti-COMP antibodies and COMP levels in the immune sera were analyzed, and passive transfer of arthritis with purified immune sera was tested. RESULTS: Immunization with rat COMP induced a severe, chronic, relapsing arthritis, with a female preponderance, in the mice. The disease developed in C3H.NB mice, but not in B10.P mice, although they share the same MHC haplotype. Both H-2q and H-2p MHC haplotypes allowed the initiation of COMPIA. Using H-2Aq-transgenic and H-2Ap-transgenic mice, we demonstrated a role of both the Aq and Ep class II molecules in this model. Interestingly, the introduction of a mutation in the Ncf1 gene, which is responsible for the reduced oxidative burst phenotype, into the COMPIA-resistant B10.Q mouse strain rendered them highly susceptible to arthritis. In addition, the transfer of anti-COMP serum was found to induce arthritis in naive mice. Mice transgenic for the rheumatoid arthritis (RA)-associated DR4 molecule were found to be highly susceptible to COMPIA. CONCLUSION: Using rat COMP, we have developed a new and unique mouse model of chronic arthritis that resembles RA. This model will be useful as an appropriate and alternative model for studying the pathogenesis of RA.


Assuntos
Artrite/imunologia , Proteínas da Matriz Extracelular/imunologia , Glicoproteínas/imunologia , Complexo Principal de Histocompatibilidade/genética , NADPH Oxidases/metabolismo , Animais , Anticorpos/sangue , Artrite/sangue , Artrite/induzido quimicamente , Proteína de Matriz Oligomérica de Cartilagem , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/efeitos adversos , Proteínas da Matriz Extracelular/sangue , Feminino , Glicoproteínas/efeitos adversos , Glicoproteínas/sangue , Humanos , Proteínas Matrilinas , Camundongos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA