Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 147: 688-713, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003083

RESUMO

Innately designed to induce physiological changes, pharmaceuticals are foreknowingly hazardous to the ecosystem. Advanced oxidation processes (AOPs) are recognized as a set of contemporary and highly efficient methods being used as a contrivance for the removal of pharmaceutical residues. Since reactive oxygen species (ROS) are formed in these processes to interact and contribute directly toward the oxidation of target contaminant(s), a profound insight regarding the mechanisms of ROS leading to the degradation of pharmaceuticals is fundamentally significant. The conceptualization of some specific reaction mechanisms allows the design of an effective and safe degradation process that can empirically reduce the environmental impact of the micropollutants. This review mainly deliberates the mechanistic reaction pathways for ROS-mediated degradation of pharmaceuticals often leading to complete mineralization, with a focus on acetaminophen as a drug waste model.


Assuntos
Acetaminofen , Espécies Reativas de Oxigênio , Acetaminofen/química , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/química , Oxirredução , Preparações Farmacêuticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA