Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37767965

RESUMO

Adulis, located on the Red Sea coast in present-day Eritrea, was a bustling trading centre between the first and seventh centuries CE. Several classical geographers-Agatharchides of Cnidus, Pliny the Elder, Strabo-noted the value of Adulis to Greco-Roman Egypt, particularly as an emporium for living animals, including baboons (Papio spp.). Though fragmentary, these accounts predict the Adulite origins of mummified baboons in Ptolemaic catacombs, while inviting questions on the geoprovenance of older (Late Period) baboons recovered from Gabbanat el-Qurud ('Valley of the Monkeys'), Egypt. Dated to ca. 800-540 BCE, these animals could extend the antiquity of Egyptian-Adulite trade by as much as five centuries. Previously, Dominy et al. (2020) used stable isotope analysis to show that two New Kingdom specimens of Papio hamadryas originate from the Horn of Africa. Here, we report the complete mitochondrial genomes from a mummified baboon from Gabbanat el-Qurud and 14 museum specimens with known provenance together with published georeferenced mitochondrial sequence data. Phylogenetic assignment connects the mummified baboon to modern populations of P. hamadryas in Eritrea, Ethiopia, and eastern Sudan. This result, assuming geographical stability of phylogenetic clades, corroborates Greco-Roman historiographies by pointing toward present-day Eritrea, and by extension Adulis, as a source of baboons for Late Period Egyptians. It also establishes geographic continuity with baboons from the fabled Land of Punt (Dominy et al., 2020), giving weight to speculation that Punt and Adulis were essentially the same trading centres separated by a thousand years of history.


Assuntos
Papio , Humanos , Animais , Filogenia , África , Egito , Geografia
3.
Nat Plants ; 9(7): 1057-1066, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37291397

RESUMO

Plant-soil feedbacks (PSFs), soil-mediated plant effects on conspecific or heterospecific successors, are a major driver of vegetation development. It has been proposed that specialist plant antagonists drive differences in PSF responses between conspecific and heterospecific plants, whereas contributions of generalist plant antagonists to PSFs remain understudied. Here we examined PSFs among nine annual and nine perennial grassland species to test whether poorly defended annuals accumulate generalist-dominated plant antagonist communities, causing equally negative PSFs on conspecific and heterospecific annuals, whereas well-defended perennial species accumulate specialist-dominated antagonist communities, predominantly causing negative conspecific PSFs. Annuals exhibited more negative PSFs than perennials, corresponding to differences in root-tissue investments, but this was independent of conditioning plant group. Overall, conspecific and heterospecific PSFs did not differ. Instead, conspecific and heterospecific PSF responses in individual species' soils were correlated. Soil fungal communities were generalist dominated but could not robustly explain PSF variation. Our study nevertheless suggests an important role for host generalists as drivers of PSFs.


Assuntos
Pradaria , Solo , Retroalimentação , Plantas
4.
Nat Commun ; 14(1): 3038, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37263999

RESUMO

Telomeres are environment-sensitive regulators of health and aging. Here,we present telomere DNA length analysis of two reef-building coral genera revealing that the long- and short-term water thermal regime is a key driver of between-colony variation across the Pacific Ocean. Notably, there are differences between the two studied genera. The telomere DNA lengths of the short-lived, more stress-sensitive Pocillopora spp. colonies were largely determined by seasonal temperature variation, whereas those of the long-lived, more stress-resistant Porites spp. colonies were insensitive to seasonal patterns, but rather influenced by past thermal anomalies. These results reveal marked differences in telomere DNA length regulation between two evolutionary distant coral genera exhibiting specific life-history traits. We propose that environmentally regulated mechanisms of telomere maintenance are linked to organismal performances, a matter of paramount importance considering the effects of climate change on health.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Temperatura , Estações do Ano , DNA/genética
5.
Nat Commun ; 14(1): 3039, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264002

RESUMO

Coral reefs are among the most diverse ecosystems on Earth. They support high biodiversity of multicellular organisms that strongly rely on associated microorganisms for health and nutrition. However, the extent of the coral reef microbiome diversity and its distribution at the oceanic basin-scale remains to be explored. Here, we systematically sampled 3 coral morphotypes, 2 fish species, and planktonic communities in 99 reefs from 32 islands across the Pacific Ocean, to assess reef microbiome composition and biogeography. We show a very large richness of reef microorganisms compared to other environments, which extrapolated to all fishes and corals of the Pacific, approximates the current estimated total prokaryotic diversity for the entire Earth. Microbial communities vary among and within the 3 animal biomes (coral, fish, plankton), and geographically. For corals, the cross-ocean patterns of diversity are different from those known for other multicellular organisms. Within each coral morphotype, community composition is always determined by geographic distance first, both at the island and across ocean scale, and then by environment. Our unprecedented sampling effort of coral reef microbiomes, as part of the Tara Pacific expedition, provides new insight into the global microbial diversity, the factors driving their distribution, and the biocomplexity of reef ecosystems.


Assuntos
Antozoários , Microbiota , Animais , Recifes de Corais , Oceano Pacífico , Biodiversidade , Peixes , Plâncton
6.
Nat Commun ; 14(1): 3037, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264015

RESUMO

Health and resilience of the coral holobiont depend on diverse bacterial communities often dominated by key marine symbionts of the Endozoicomonadaceae family. The factors controlling their distribution and their functional diversity remain, however, poorly known. Here, we study the ecology of Endozoicomonadaceae at an ocean basin-scale by sampling specimens from three coral genera (Pocillopora, Porites, Millepora) on 99 reefs from 32 islands across the Pacific Ocean. The analysis of 2447 metabarcoding and 270 metagenomic samples reveals that each coral genus harbored a distinct new species of Endozoicomonadaceae. These species are composed of nine lineages that have distinct biogeographic patterns. The most common one, found in Pocillopora, appears to be a globally distributed symbiont with distinct metabolic capabilities, including the synthesis of amino acids and vitamins not produced by the host. The other lineages are structured partly by the host genetic lineage in Pocillopora and mainly by the geographic location in Porites. Millepora is more rarely associated to Endozoicomonadaceae. Our results show that different coral genera exhibit distinct strategies of host-Endozoicomonadaceae associations that are defined at the bacteria lineage level.


Assuntos
Antozoários , Gammaproteobacteria , Animais , Antozoários/microbiologia , Oceano Pacífico , Ecologia , Bactérias , Recifes de Corais
7.
Sci Data ; 10(1): 324, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264023

RESUMO

The Tara Pacific expedition (2016-2018) sampled coral ecosystems around 32 islands in the Pacific Ocean and the ocean surface waters at 249 locations, resulting in the collection of nearly 58 000 samples. The expedition was designed to systematically study warm-water coral reefs and included the collection of corals, fish, plankton, and seawater samples for advanced biogeochemical, molecular, and imaging analysis. Here we provide a complete description of the sampling methodology, and we explain how to explore and access the different datasets generated by the expedition. Environmental context data were obtained from taxonomic registries, gazetteers, almanacs, climatologies, operational biogeochemical models, and satellite observations. The quality of the different environmental measures has been validated not only by various quality control steps, but also through a global analysis allowing the comparison with known environmental large-scale structures. Such publicly released datasets open the perspective to address a wide range of scientific questions.


Assuntos
Antozoários , Recifes de Corais , Animais , Ecossistema , Oceano Pacífico , Água do Mar
8.
Nat Commun ; 14(1): 3056, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264036

RESUMO

Heat waves are causing declines in coral reefs globally. Coral thermal responses depend on multiple, interacting drivers, such as past thermal exposure, endosymbiont community composition, and host genotype. This makes the understanding of their relative roles in adaptive and/or plastic responses crucial for anticipating impacts of future warming. Here, we extracted DNA and RNA from 102 Pocillopora colonies collected from 32 sites on 11 islands across the Pacific Ocean to characterize host-photosymbiont fidelity and to investigate patterns of gene expression across a historical thermal gradient. We report high host-photosymbiont fidelity and show that coral and microalgal gene expression respond to different drivers. Differences in photosymbiotic association had only weak impacts on host gene expression, which was more strongly correlated with the historical thermal environment, whereas, photosymbiont gene expression was largely determined by microalgal lineage. Overall, our results reveal a three-tiered strategy of thermal acclimatization in Pocillopora underpinned by host-photosymbiont specificity, host transcriptomic plasticity, and differential photosymbiotic association under extreme warming.


Assuntos
Antozoários , Transcriptoma , Animais , Oceano Pacífico , Transcriptoma/genética , Antozoários/genética , Aclimatação/genética , Recifes de Corais
9.
Sci Data ; 10(1): 326, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264047

RESUMO

Coral reef science is a fast-growing field propelled by the need to better understand coral health and resilience to devise strategies to slow reef loss resulting from environmental stresses. Key to coral resilience are the symbiotic interactions established within a complex holobiont, i.e. the multipartite assemblages comprising the coral host organism, endosymbiotic dinoflagellates, bacteria, archaea, fungi, and viruses. Tara Pacific is an ambitious project built upon the experience of previous Tara Oceans expeditions, and leveraging state-of-the-art sequencing technologies and analyses to dissect the biodiversity and biocomplexity of the coral holobiont screened across most archipelagos spread throughout the entire Pacific Ocean. Here we detail the Tara Pacific workflow for multi-omics data generation, from sample handling to nucleotide sequence data generation and deposition. This unique multidimensional framework also includes a large amount of concomitant metadata collected side-by-side that provide new assessments of coral reef biodiversity including micro-biodiversity and shape future investigations of coral reef dynamics and their fate in the Anthropocene.


Assuntos
Antozoários , Recifes de Corais , Animais , Biodiversidade , Ecossistema
10.
Commun Biol ; 6(1): 566, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264063

RESUMO

Endogenous viral elements (EVEs) offer insight into the evolutionary histories and hosts of contemporary viruses. This study leveraged DNA metagenomics and genomics to detect and infer the host of a non-retroviral dinoflagellate-infecting +ssRNA virus (dinoRNAV) common in coral reefs. As part of the Tara Pacific Expedition, this study surveyed 269 newly sequenced cnidarians and their resident symbiotic dinoflagellates (Symbiodiniaceae), associated metabarcodes, and publicly available metagenomes, revealing 178 dinoRNAV EVEs, predominantly among hydrocoral-dinoflagellate metagenomes. Putative associations between Symbiodiniaceae and dinoRNAV EVEs were corroborated by the characterization of dinoRNAV-like sequences in 17 of 18 scaffold-scale and one chromosome-scale dinoflagellate genome assembly, flanked by characteristically cellular sequences and in proximity to retroelements, suggesting potential mechanisms of integration. EVEs were not detected in dinoflagellate-free (aposymbiotic) cnidarian genome assemblies, including stony corals, hydrocorals, jellyfish, or seawater. The pervasive nature of dinoRNAV EVEs within dinoflagellate genomes (especially Symbiodinium), as well as their inconsistent within-genome distribution and fragmented nature, suggest ancestral or recurrent integration of this virus with variable conservation. Broadly, these findings illustrate how +ssRNA viruses may obscure their genomes as members of nested symbioses, with implications for host evolution, exaptation, and immunity in the context of reef health and disease.


Assuntos
Antozoários , Dinoflagellida , Vírus de RNA , Animais , Dinoflagellida/genética , Genoma , Antozoários/genética , Vírus de RNA/genética , Recifes de Corais
11.
PeerJ ; 11: e15023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37151292

RESUMO

Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.


Assuntos
Recifes de Corais , Dinoflagellida , Variação Genética , Dinoflagellida/classificação , Dinoflagellida/genética , Filogenia , Consenso , Antozoários , Simbiose
12.
Mol Ecol ; 32(9): 2151-2173, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36869609

RESUMO

Global habitat degradation heightens the need to better understand patterns of genetic connectivity and diversity of marine biota across geographical ranges to guide conservation efforts. Corals across the Red Sea are subject to pronounced environmental differences, but studies so far suggest that animal populations are largely connected, excepting evidence for a genetic break between the northern-central and southern regions. Here, we investigated population structure and holobiont assemblage of two common pocilloporid corals, Pocillopora verrucosa and Stylophora pistillata, across the Red Sea. We found little evidence for population differentiation in P. verrucosa, except for the southernmost site. Conversely, S. pistillata exhibited a complex population structure with evidence for within-reef and regional genetic differentiation, in line with differences in their reproductive mode (P. verrucosa is a broadcast spawner and S. pistillata is a brooder). Analysis for genomic loci under positive selection identified 85 sites (18 of which were in coding sequences) that distinguished the southern P. verrucosa population from the remainder of the Red Sea population. By comparison, we found 128 loci (24 of which were residing in coding sequences) in S. pistillata with evidence for local adaptation at various sites. Functional annotation of the underlying proteins revealed putative roles in the response to stress, lipid metabolism, transport, cytoskeletal rearrangement, and ciliary function (among others). Microbial assemblages of both coral species showed pervasive association with microalgal symbionts from the genus Symbiodinium (former clade A) and bacteria from the genus Endozoicomonas that exhibited significant differences according to host genotype and environment. The disparity of population genetic and holobiont assemblage patterns even between closely related species (family Pocilloporidae) highlights the need for multispecies investigations to better understand the role of the environment in shaping evolutionary trajectories. It further emphasizes the importance of networks of reef reserves to achieve conservation of genetic variants critical to the future survival of coral ecosystems.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Ecossistema , Oceano Índico , Evolução Biológica , Biota , Recifes de Corais , Simbiose/genética
13.
NPJ Biodivers ; 2(1): 15, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39242808

RESUMO

Tropical coral reefs are among the most affected ecosystems by climate change and face increasing loss in the coming decades. Effective conservation strategies that maximize ecosystem resilience must be informed by the accurate characterization of extant genetic diversity and population structure together with an understanding of the adaptive potential of keystone species. Here we analyzed samples from the Tara Pacific Expedition (2016-2018) that completed an 18,000 km longitudinal transect of the Pacific Ocean sampling three widespread corals-Pocillopora meandrina, Porites lobata, and Millepora cf. platyphylla-across 33 sites from 11 islands. Using deep metagenomic sequencing of 269 colonies in conjunction with morphological analyses and climate variability data, we can show that despite a targeted sampling the transect encompasses multiple cryptic species. These species exhibit disparate biogeographic patterns and, most importantly, distinct evolutionary patterns in identical environmental regimes. Our findings demonstrate on a basin scale that evolutionary trajectories are species-specific and can only in part be predicted from the environment. This highlights that conservation strategies must integrate multi-species investigations to discern the distinct genomic footprints shaped by selection as well as the genetic potential for adaptive change.

14.
Sci Rep ; 12(1): 18273, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316371

RESUMO

Exposure to deoxygenation from climate warming and pollution is emerging as a contributing factor of coral bleaching and mortality. However, the combined effects of heating and deoxygenation on bleaching susceptibility remain unknown. Here, we employed short-term thermal stress assays to show that deoxygenated seawater can lower the thermal limit of an Acropora coral by as much as 1 °C or 0.4 °C based on bleaching index scores or dark-acclimated photosynthetic efficiencies, respectively. Using RNA-Seq, we show similar stress responses to heat with and without deoxygenated seawater, both activating putative key genes of the hypoxia-inducible factor response system indicative of cellular hypoxia. We also detect distinct deoxygenation responses, including a disruption of O2-dependent photo-reception/-protection, redox status, and activation of an immune response prior to the onset of bleaching. Thus, corals are even more vulnerable when faced with heat stress in deoxygenated waters. This highlights the need to integrate dissolved O2 measurements into global monitoring programs of coral reefs.


Assuntos
Antozoários , Branqueamento de Corais , Animais , Recifes de Corais , Antozoários/fisiologia , Resposta ao Choque Térmico , Clima
15.
Mol Ecol ; 30(18): 4466-4480, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34342082

RESUMO

Corals from the northern Red Sea, in particular the Gulf of Aqaba (GoA), have exceptionally high bleaching thresholds approaching >5℃ above their maximum monthly mean (MMM) temperatures. These elevated thresholds are thought to be due to historical selection, as corals passed through the warmer Southern Red Sea during recolonization from the Arabian Sea. To test this hypothesis, we determined thermal tolerance thresholds of GoA versus central Red Sea (CRS) Stylophora pistillata corals using multi-temperature acute thermal stress assays to determine thermal thresholds. Relative thermal thresholds of GoA and CRS corals were indeed similar and exceptionally high (~7℃ above MMM). However, absolute thermal thresholds of CRS corals were on average 3℃ above those of GoA corals. To explore the molecular underpinnings, we determined gene expression and microbiome response of the coral holobiont. Transcriptomic responses differed markedly, with a strong response to the thermal stress in GoA corals and their symbiotic algae versus a remarkably muted response in CRS colonies. Concomitant to this, coral and algal genes showed temperature-induced expression in GoA corals, while exhibiting fixed high expression (front-loading) in CRS corals. Bacterial community composition of GoA corals changed dramatically under heat stress, whereas CRS corals displayed stable assemblages. We interpret the response of GoA corals as that of a resilient population approaching a tipping point in contrast to a pattern of consistently elevated thermal resistance in CRS corals that cannot further attune. Such response differences suggest distinct thermal tolerance mechanisms that may affect the response of coral populations to ocean warming.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Resposta ao Choque Térmico , Oceano Índico , Simbiose/genética
16.
Ecol Evol ; 11(7): 3393-3406, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33841792

RESUMO

Giant clams (Tridacninae) are important members of Indo-Pacific coral reefs and among the few bivalve groups that live in symbiosis with unicellular algae (Symbiodiniaceae). Despite the importance of these endosymbiotic dinoflagellates for clam ecology, the diversity and specificity of these associations remain relatively poorly studied, especially in the Red Sea. Here, we used the internal transcribed spacer 2 (ITS2) rDNA gene region to investigate Symbiodiniaceae communities associated with Red Sea Tridacna maxima clams. We sampled five sites spanning 1,300 km (10° of latitude, from the Gulf of Aqaba, 29°N, to the Farasan Banks, 18°N) along the Red Sea's North-South environmental gradient. We detected a diverse and structured assembly of host-associated algae with communities demonstrating region and site-specificity. Specimens from the Gulf of Aqaba harbored three genera of Symbiodiniaceae, Cladocopium, Durusdinium, and Symbiodinium, while at all other sites clams associated exclusively with algae from the Symbiodinium genus. Of these exclusively Symbiodinium-associating sites, the more northern (27° and 22°) and more southern sites (20° and 18°) formed two separate groupings despite site-specific algal genotypes being resolved at each site. These groupings were congruent with the genetic break seen across multiple marine taxa in the Red Sea at approximately 19°, and along with our documented site-specificity of algal communities, contrasted the panmictic distribution of the T. maxima host. As such, our findings indicate flexibility in T. maxima-Symbiodiniaceae associations that may explain its relatively high environmental plasticity and offers a mechanism for environmental niche adaptation.

18.
Mol Ecol ; 30(2): 391-405, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33249664

RESUMO

All metazoans are in fact holobionts, resulting from the association of several organisms, and organismal adaptation is then due to the composite response of this association to the environment. Deciphering the mechanisms of symbiont acquisition in a holobiont is therefore essential to understanding the extent of its adaptive capacities. In cnidarians, some species acquire their photosynthetic symbionts directly from their parents (vertical transmission) but may also acquire symbionts from the environment (horizontal acquisition) at the adult stage. The Mediterranean snakelocks sea anemone, Anemonia viridis (Forskål, 1775), passes down symbionts from one generation to the next by vertical transmission, but the capacity for such horizontal acquisition is still unexplored. To unravel the flexibility of the association between the different host lineages identified in A. viridis and its Symbiodiniaceae, we genotyped both the animal hosts and their symbiont communities in members of host clones in five different locations in the North Western Mediterranean Sea. The composition of within-host-symbiont populations was more dependent on the geographical origin of the hosts than their membership to a given lineage or even to a given clone. Additionally, similarities in host-symbiont communities were greater among genets (i.e. among different clones) than among ramets (i.e. among members of the same given clonal genotype). Taken together, our results demonstrate that A. viridis may form associations with a range of symbiotic dinoflagellates and suggest a capacity for horizontal acquisition. A mixed-mode transmission strategy in A. viridis, as we posit here, may help explain the large phenotypic plasticity that characterizes this anemone.


Assuntos
Antozoários , Dinoflagellida , Anêmonas-do-Mar , Animais , Antozoários/genética , Mar Mediterrâneo , Anêmonas-do-Mar/genética , Simbiose/genética
19.
Sci Rep ; 10(1): 15893, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985530

RESUMO

Molecular characterization of the coral host and the microbial assemblages associated with it (referred to as the coral holobiont) is currently undertaken via marker gene sequencing. This requires bulky instruments and controlled laboratory conditions which are impractical for environmental experiments in remote areas. Recent advances in sequencing technologies now permit rapid sequencing in the field; however, development of specific protocols and pipelines for the effective processing of complex microbial systems are currently lacking. Here, we used a combination of 3 marker genes targeting the coral animal host, its symbiotic alga, and the associated bacterial microbiome to characterize 60 coral colonies collected and processed in situ, during the Tara Pacific expedition. We used Oxford Nanopore Technologies to sequence marker gene amplicons and developed bioinformatics pipelines to analyze nanopore reads on a laptop, obtaining results in less than 24 h. Reef scale network analysis of coral-associated bacteria reveals broadly distributed taxa, as well as host-specific associations. Protocols and tools used in this work may be applicable for rapid coral holobiont surveys, immediate adaptation of sampling strategy in the field, and to make informed and timely decisions in the context of the current challenges affecting coral reefs worldwide.


Assuntos
Antozoários/microbiologia , Bactérias/genética , Recifes de Corais , Microbiota/genética , Animais , Sequenciamento por Nanoporos , Simbiose
20.
Glob Chang Biol ; 26(8): 4328-4343, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32567206

RESUMO

Coral bleaching is one of the main drivers of reef degradation. Most corals bleach and suffer mortality at just 1-2°C above their maximum monthly mean temperatures, but some species and genotypes resist or recover better than others. Here, we conducted a series of 18-hr short-term acute heat stress assays side-by-side with a 21-day long-term heat stress experiment to assess the ability of both approaches to resolve coral thermotolerance differences reflective of in situ reef temperature thresholds. Using a suite of physiological parameters (photosynthetic efficiency, coral whitening, chlorophyll a, host protein, algal symbiont counts, and algal type association), we assessed bleaching susceptibility of Stylophora pistillata colonies from the windward/exposed and leeward/protected sites of a nearshore coral reef in the central Red Sea, which had previously shown differential mortality during a natural bleaching event. Photosynthetic efficiency was most indicative of the expected higher thermal tolerance in corals from the protected reef site, denoted by an increased retention of dark-adapted maximum quantum yields at higher temperatures. These differences were resolved using both experimental setups, as corroborated by a positive linear relationship, not observed for the other parameters. Notably, short-term acute heat stress assays resolved per-colony (genotype) differences that may have been masked by acclimation effects in the long-term experiment. Using our newly developed portable experimental system termed the Coral Bleaching Automated Stress System (CBASS), we thus highlight the potential of mobile, standardized short-term acute heat stress assays to resolve fine-scale differences in coral thermotolerance. Accordingly, such a system may be suitable for large-scale determination and complement existing approaches to identify resilient genotypes/reefs for downstream experimental examination and prioritization of reef sites for conservation/restoration. Development of such a framework is consistent with the recommendations of the National Academy of Sciences and the Reef Restoration and Adaptation Program committees for new intervention and restoration strategies.


Assuntos
Antozoários , Animais , Clorofila A , Recifes de Corais , Resposta ao Choque Térmico , Oceano Índico , Termotolerância
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA