Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 14(12)2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36560729

RESUMO

Burmese python (Python bivittatus) is an invasive snake that has significantly affected ecosystems in southern Florida, United States. Aside from direct predation and competition, invasive species can also introduce nonnative pathogens that can adversely affect native species. The subfamily Serpentovirinae (order Nidovirales) is composed of positive-sense RNA viruses primarily found in reptiles. Some serpentoviruses, such as shingleback nidovirus, are associated with mortalities in wild populations, while others, including ball python nidovirus and green tree python nidovirus can be a major cause of disease and mortality in captive animals. To determine if serpentoviruses were present in invasive Burmese pythons in southern Florida, oral swabs were collected from both free-ranging and long-term captive snakes. Swabs were screened for the presence of serpentovirus by reverse transcription PCR and sequenced. A total serpentovirus prevalence of 27.8% was detected in 318 python samples. Of the initial swabs from 172 free-ranging pythons, 42 (24.4%) were positive for multiple divergent viral sequences comprising four clades across the sampling range. Both sex and snout-vent length were statistically significant factors in virus prevalence, with larger male snakes having the highest prevalence. Sampling location was statistically significant in circulating virus sequence. Mild clinical signs and lesions consistent with serpentovirus infection were observed in a subset of sampled pythons. Testing of native snakes (n = 219, 18 species) in part of the python range found no evidence of python virus spillover; however, five individual native snakes (2.3%) representing three species were PCR positive for unique, divergent serpentoviruses. Calculated pairwise uncorrected distance analysis indicated the newly discovered virus sequences likely represent three novel genera in the subfamily Serpentovirinae. This study is the first to characterize serpentovirus in wild free-ranging pythons or in any free-ranging North America reptile. Though the risk these viruses pose to the invasive and native species is unknown, the potential for spillover to native herpetofauna warrants further investigation.


Assuntos
Boidae , Nidovirales , Animais , Florida/epidemiologia , Ecossistema , Espécies Introduzidas
2.
Sci Rep ; 11(1): 14793, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285264

RESUMO

Recent increases in turkey vulture (Cathartes aura) and black vulture (Coragyps atratus) populations in North America have been attributed in part to their success adapting to human-modified landscapes. However, the capacity for such landscapes to generate favorable roosting conditions for these species has not been thoroughly investigated. We assessed the role of anthropogenic and natural landscape elements on roosting habitat selection of 11 black and 7 turkey vultures in coastal South Carolina, USA using a GPS satellite transmitter dataset derived from previous research. Our dataset spanned 2006-2012 and contained data from 7916 nights of roosting. Landscape fragmentation, as measured by land cover richness, influenced roosting probability for both species in all seasons, showing either a positive relationship or peaking at intermediate values. Roosting probability of turkey vultures was maximized at intermediate road densities in three of four seasons, and black vultures showed a positive relationship with roads in fall, but no relationship throughout the rest of the year. Roosting probability of both species declined with increasing high density urban cover throughout most of the year. We suggest that landscape transformations lead to favorable roosting conditions for turkey vultures and black vultures, which has likely contributed to their recent proliferations across much of the Western Hemisphere.


Assuntos
Comportamento Animal/fisiologia , Falconiformes/fisiologia , Tecnologia de Sensoriamento Remoto/métodos , Animais , Ecossistema , Sistemas de Informação Geográfica , Atividades Humanas , América do Norte , Imagens de Satélites , Estações do Ano
3.
PLoS One ; 15(8): e0236660, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32785239

RESUMO

Squamate reptiles (snakes and lizards) rely on chemical cues from conspecifics to search the environment for potential mates. How such cues are used by invasive species to facilitate reproduction, especially seasonally, is a key question that can inform management practices. The Argentine black and white tegu (Salvator merianae) is an invasive reptile species in south Florida threatening native fauna in biodiverse regions such as Everglades National Park. While some information exists on the reproductive ecology of this species in its native range in South America, the chemical ecology of S. merianae is unclear especially in its invasive range. By testing both male (n = 7) and female (n = 7) tegus in a Y-maze apparatus, we assessed if either sex follows chemical trails left by conspecifics and if behaviors were sex- or season-specific. We conducted three types of trials where conspecifics created odor trails: Male-only (male scent only in base and one arm of Y), Female-only, and Male vs. female. Males did not preferentially follow scent trails from either sex, but they did differentially investigate conspecific scent from both sexes. Seasonally, males showed increased rates of chemosensory sampling (rates of tongue-flicking) during the spring (breeding season; March-May) compared to fall (non-breeding season; September-November). Males also had reduced turning and pausing behavior while trailing in the spring. Female tegus exhibited stronger conspecific trailing abilities than males, following both male and female scent trails, and they explored the maze less before making an arm choice. Females also investigated the scent trails intensely compared to males (more passes in scented arms, more time with scent trails). Our results demonstrate for the first time that females of an invasive reptile species can follow conspecific scent trails. Given the strong female responses to odor, sex-specific targeting of tegus via application of a conspecific chemical cue in traps could enhance removal rates of females during the breeding season.


Assuntos
Lagartos/fisiologia , Casamento , Comportamento Sexual Animal/fisiologia , Serpentes/fisiologia , Animais , Ecologia , Feminino , Florida , Humanos , Espécies Introduzidas , Masculino , Odorantes/análise , Reprodução/fisiologia , América do Sul
4.
Integr Zool ; 14(5): 460-469, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30585425

RESUMO

Animals communicate with potential mates using species-specific signals, and pheromones are powerful sexual signals that modify conspecific behavior to facilitate mate location. Among the vertebrates, snakes are especially adept in mate searching via chemical trailing, which is particularly relevant given that many snake species are invasive outside their native ranges. Chemical signals used in mate choice are, thus, potentially valuable tools for management of invasive snake species. The Burmese python (Python bivittatus) is an invasive snake in the Florida Everglades where it is negatively impacting native fauna. In this study, we sought to: (i) determine if males can follow conspecific chemical trails in a Y-maze; and (ii) describe the mate searching behaviors exhibited by males while trailing. All males consistently followed a single female scent trail in the maze, but when only a male scent trail was present they did not discriminate between the male and blank arms. Rate of tongue-flicking, a proxy for chemosensory sampling, was also marginally higher when males were following female versus male scent trails. However, when both female and male scent trails were simultaneously present in the Y-maze, males did not show a preference for the female arm, although the tongue-flick rate was higher in the female-only trial compared to female versus male. Analyses of multiple male behaviors individually and using an ethogram revealed that behaviors were more frequent and complex in the female-only trials compared to male-only trials. Additional behavioral trials are needed to determine if an effective pheromonal approach to Burmese python management is possible.


Assuntos
Comportamento Apetitivo , Boidae/fisiologia , Odorantes , Feromônios , Comportamento Sexual Animal , Animais , Feminino , Masculino , Fatores Sexuais , Especificidade da Espécie
5.
Mol Ecol Resour ; 14(2): 374-80, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24119154

RESUMO

Recent studies have demonstrated that detection of environmental DNA (eDNA) from aquatic vertebrates in water bodies is possible. The Burmese python, Python bivittatus, is a semi-aquatic, invasive species in Florida where its elusive nature and cryptic coloration make its detection difficult. Our goal was to develop a diagnostic PCR to detect P. bivittatus from water-borne eDNA, which could assist managers in monitoring this invasive species. First, we used captive P. bivittatus to determine whether reptilian DNA could be isolated and amplified from water samples. We also evaluated the efficacy of two DNA isolation methods and two DNA extraction kits commonly used in eDNA preparation. A fragment of the mitochondrial cytochrome b gene from P. bivittatus was detected in all water samples isolated with the sodium acetate precipitate and the QIAamp DNA Micro Kit. Next, we designed P. bivittatus-specific primers and assessed the degradation rate of eDNA in water. Our primers did not amplify DNA from closely related species, and we found that P. bivittatus DNA was consistently detectable up to 96 h. Finally, we sampled water from six field sites in south Florida. Samples from five sites, where P. bivittatus has been observed, tested positive for eDNA. The final site was negative and had no prior documented evidence of P. bivittatus. This study shows P. bivittatus eDNA can be isolated from water samples; thus, this method is a new and promising technique for the management of invasive reptiles.


Assuntos
Boidae/classificação , Boidae/crescimento & desenvolvimento , DNA/isolamento & purificação , Espécies Introduzidas , Reação em Cadeia da Polimerase/métodos , Animais , Boidae/genética , Citocromos b/genética , DNA/genética , Primers do DNA/genética , DNA Mitocondrial/genética , Florida , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA