Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Cancer ; 6(12): 1306-19, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26640591

RESUMO

Triple-negative breast cancer (TNBC) is a major cause of death among breast cancer patients that results from intrinsic and acquired resistance to systemic chemotherapies. To identify novel targets for effective treatment of TNBC through combination strategies with MEK inhibitor (AS703026), we used a novel method of combining high-throughput two- and three-dimensional (2D and 3D) RNAi screening. TNBC cells were transfected with a kinome siRNA library comprising siRNA targeting 790 kinases under both 2D and 3D culture conditions with or without AS703026. Molecule activity predictor analysis revealed the PI3K pathway as the major target pathway in our RNAi combination studies in TNBC. We found that PI3K inhibitor SAR245409 (also called XL765) combined with AS703026 synergistically inhibited proliferation compared with either drug alone (P < 0.001). Reduced in vitro colony formation (P < 0.001) and migration and invasion ability were also observed with the combination treatment (P<0.01). Our data suggest that SAR245409 combined with AS703026 may be effective in patients with TNBC. We conclude that a novel powerful high-throughput RNAi assays were able to identify anti-cancer drugs as single or combinational agents. Integrated and multi-system RNAi screening methods can complement difference between in vitro and in vivo culture conditions, and enriches targets that are close to the in vivo condition.

2.
Breast Cancer Res Treat ; 146(2): 259-72, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24916181

RESUMO

Although there are effective HER2-targeted agents, novel combination strategies in HER2-overexpressing breast cancers are needed for patients whose tumors develop drug resistance. To develop new therapeutic strategy, we investigated the combinational effect of entinostat, an oral isoform-selective histone deacetylase type I inhibitor, and lapatinib, a HER2/EGFR dual tyrosine kinase inhibitor, in HER2+ breast cancer cells. We assessed the combinational synergistic effect and its mechanism by CellTiter Blue assay, flow cytometry, anchorage-independent growth, quantitative real-time PCR, small interfering RNA, Western blotting, and mammary fat pad xenograft mouse models. We found that compared with entinostat or lapatinib alone, the two drugs in combination synergistically inhibited proliferation (P < 0.001), reduced in vitro colony formation (P < 0.05), and resulted in significant in vivo tumor shrinkage or growth inhibition in two xenograft mouse models (BT474 and SUM190, P < 0.001). The synergistic anti-tumor activity of the entinostat/lapatinib combination was due to downregulation of phosphorylated Akt, which activated transcriptional activity of FOXO3, resulting in induction of Bim1 (a BH3 domain-containing pro-apoptotic protein). Furthermore, entinostat sensitized trastuzumab/lapatinib-resistance-HER2-overexpressing cells to the trastuzumab/lapatinib combination and enhanced the anti-proliferation effect compare with single or double combination treatment. This study provides evidence that entinostat has enhanced anti-tumor effect in combination with HER2-targeted reagent, lapatinib, and resulting in induction of apoptosis by FOXO3-mediated Bim1 expression. Our finding justifies for conducting a clinical trial of combinational treatment with entinostat, lapatinib, and trastuzumab in patients with HER2-overexpressing breast cancer resistant to trastuzumab-based treatment.


Assuntos
Benzamidas/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Piridinas/farmacologia , Quinazolinas/farmacologia , Receptor ErbB-2/genética , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/genética , Benzamidas/administração & dosagem , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Feminino , Proteína Forkhead Box O3 , Regulação Neoplásica da Expressão Gênica , Inibidores de Histona Desacetilases/administração & dosagem , Inibidores de Histona Desacetilases/farmacologia , Humanos , Lapatinib , Camundongos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Piridinas/administração & dosagem , Quinazolinas/administração & dosagem , Receptor ErbB-2/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Immunol ; 191(7): 3789-98, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23997217

RESUMO

The phenylalanyl-glycyl-glycyl-alanyl-prolyl (FG-GAP) domain plays an important role in protein-protein interactions, including interaction of integrins with their ligands. Integrin-α FG-GAP repeat-containing protein 2 (Itfg2) is a highly conserved protein in vertebrates that carries two FG-GAP domains, but its role in mammalian physiology is unknown. In this article, we show that Itfg2 is an intracellular protein and it plays a critical role in B cell differentiation and development of autoimmunity. Itfg2-deficient mice displayed a phenotype consistent with retention of B cells in the spleen and had a lower concentration of IgG in the blood when compared with wild-type littermates. Itfg2-deficient splenocytes also showed a defect in cell migration in vitro. After immunization with a thymus-dependent Ag, the absence of Itfg2 caused a shift in B cell maturation from the germinal centers to the extrafollicular regions of the spleen and blocked deposition of Ag-specific plasma cells in the bone marrow. In support of hematopoietic cell intrinsic activity of Itfg2, bone marrow transplantation of Itfg2-deficient cells was sufficient to impair germinal center development in wild-type mice. Furthermore, Itfg2 deficiency exacerbated development of autoimmune disease in MRL/lpr lupus-prone mice. These results identify Itfg2 as a novel contributor to B cell differentiation and a negative regulator of the autoimmune response during lupus.


Assuntos
Doenças Autoimunes/genética , Linfócitos B/citologia , Linfócitos B/metabolismo , Diferenciação Celular/genética , Cadeias alfa de Integrinas/genética , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Sequência de Bases , Diferenciação Celular/imunologia , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Modelos Animais de Doenças , Ordem dos Genes , Marcação de Genes , Genótipo , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Imunoglobulinas/sangue , Cadeias alfa de Integrinas/química , Cadeias alfa de Integrinas/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Fenótipo , Alinhamento de Sequência , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
4.
Mol Cell Biol ; 31(1): 63-80, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20974805

RESUMO

An early lesion in many kidney diseases is damage to podocytes, which are critical components of the glomerular filtration barrier. A number of proteins are essential for podocyte filtration function, but the signaling events contributing to development of nephrotic syndrome are not well defined. Here we show that class II phosphoinositide 3-kinase C2α (PI3KC2α) is expressed in podocytes and plays a critical role in maintaining normal renal homeostasis. PI3KC2α-deficient mice developed chronic renal failure and exhibited a range of kidney lesions, including glomerular crescent formation and renal tubule defects in early disease, which progressed to diffuse mesangial sclerosis, with reduced podocytes, widespread effacement of foot processes, and modest proteinuria. These findings were associated with altered expression of nephrin, synaptopodin, WT-1, and desmin, indicating that PI3KC2α deficiency specifically impacts podocyte morphology and function. Deposition of glomerular IgA was observed in knockout mice; importantly, however, the development of severe glomerulonephropathy preceded IgA production, indicating that nephropathy was not directly IgA mediated. PI3KC2α deficiency did not affect immune responses, and bone marrow transplantation studies also indicated that the glomerulonephropathy was not the direct consequence of an immune-mediated disease. Thus, PI3KC2α is critical for maintenance of normal glomerular structure and function by supporting normal podocyte function.


Assuntos
Glomérulos Renais/anatomia & histologia , Glomérulos Renais/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Animais , Antígenos de Superfície/metabolismo , Transplante de Medula Óssea , Glomerulonefrite/etiologia , Glomerulonefrite/patologia , Glomerulonefrite/fisiopatologia , Glomerulonefrite por IGA/etiologia , Glomerulonefrite por IGA/patologia , Glomerulonefrite por IGA/fisiopatologia , Humanos , Imunoglobulina A/metabolismo , Imunoglobulina G/metabolismo , Glomérulos Renais/enzimologia , Glomérulos Renais/patologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Fosfatidilinositol 3-Quinases/deficiência , Fosfatidilinositol 3-Quinases/genética , Podócitos/enzimologia , Podócitos/patologia , Podócitos/fisiologia , Insuficiência Renal/etiologia , Insuficiência Renal/patologia , Insuficiência Renal/fisiopatologia , Quimeras de Transplante
5.
PLoS One ; 5(10): e13654, 2010 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-21048919

RESUMO

Rpn13 is a novel mammalian proteasomal receptor that has recently been identified as an amplification target in ovarian cancer. It can interact with ubiquitin and activate the deubiquitinating enzyme Uch37 at the 26S proteasome. Since neither Rpn13 nor Uch37 is an integral proteasomal subunit, we explored whether either protein is essential for mammalian development and survival. Deletion of Uch37 resulted in prenatal lethality in mice associated with severe defect in embryonic brain development. In contrast, the majority of Rpn13-deficient mice survived to adulthood, although they were smaller at birth and fewer in number than wild-type littermates. Absence of Rpn13 produced tissue-specific effects on proteasomal function: increased proteasome activity in adrenal gland and lymphoid organs, and decreased activity in testes and brain. Adult Rpn13(-/-) mice reached normal body weight but had increased body fat content and were infertile due to defective gametogenesis. Additionally, Rpn13(-/-) mice showed increased T-cell numbers, resembling growth hormone-mediated effects. Indeed, serum growth hormone and follicular stimulating hormone levels were significantly increased in Rpn13(-/-) mice, while growth hormone receptor expression was reduced in the testes. In conclusion, this is the first report characterizing the physiological roles of Uch37 and Rpn13 in murine development and implicating a non-ATPase proteasomal protein, Rpn13, in the process of gametogenesis.


Assuntos
Glicoproteínas de Membrana/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Sequência de Bases , Western Blotting , Primers do DNA , Citometria de Fluxo , Camundongos , Camundongos Mutantes , Ressonância Magnética Nuclear Biomolecular , Oogênese/fisiologia , RNA Mensageiro/genética , Espermatogênese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA