Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8049, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580788

RESUMO

This study provides insights into factors that influence the water balance of selected European lakes, mainly in Central Europe, and their implications for water quality. An analysis of isotopic, chemical and land use data using statistical and artificial intelligence models showed that climate, particularly air temperature and precipitation, played a key role in intensifying evaporation losses from the lakes. Water balance was also affected by catchment factors, notably groundwater table depth. The study shows that lakes at lower altitudes with shallow depths and catchments dominated by urban or crop cover were more sensitive to water balance changes. These lakes had higher evaporation-to-inflow ratios and increased concentrations of total nitrogen in the water. On the other hand, lakes at higher elevations with deeper depths and prevailing forest cover in the catchment were less sensitive to water balance changes. These lakes, which are often of glacial origin, were characterized by lower evaporation losses and thus better water quality in terms of total nitrogen concentrations. Understanding connections between water balance and water quality is crucial for effective lake management and the preservation of freshwater ecosystems.

2.
J Environ Manage ; 345: 118803, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37611515

RESUMO

In coastal salinized groundwater systems, contamination from various nitrate (NO3) inputs combined with complex hydrogeochemical processes make it difficult to distinguish NO3 sources and identify potential NO3 transformtation processes. Effective field-based NO3 studies in coastal areas are needed to improve the understanding of NO3 contamination dynamics in groundwater of such complex coastal systems. This study focuses on a typical Mediterranean coastal agricultural area, located in Tunisia, experiencing substantial NO3 contamination from multiple anthropogenic sources. Here, multiple isotopic tracers (δ18OH2O, δ2HH2O, δ15NNO3, δ18ONO3, and δ11B) combined with a Bayesian isotope MixSIAR model are used (i) to identify the major NO3 sources and their contributions, and (ii) to describe the potential NO3 transformation processes. The measured NO3 concentrations in groundwater are above the natural baseline threshold, suggesting anthropogenic influence. The measured isotopic composition of NO3 indicates that manure, soil organic matter, and sewage are the potential sources of NO3, while δ11B values constrain the NO3 contamination to manure; a finding that is supported by the results of MixSIAR model revealing that manure-derived NO3 dominates over other likely sources. Nitrate derived from manure in the study area is attributed to organic fertilizers used to promote crop growth, and livestock that deposit manure directly on the ground surface. Evidence for ongoing denitrification in groundwaters of the study area is supported by an enrichment in both 15N and 18O in the remaining NO3, although isotopic mass balances between the measured and the theoretical δ18ONO3 values also suggest the occurrence of nitrification. The simultaneous occurrence of these biogeochemical processes with heterogeneous distribution across the study area reflect the complexity of interactions within the investigated coastal aquifer. The multiple isotopic tracer approach used here can identify the effect of multiple NO3 anthropogenic activities in coastal environments, which is fundamental for sustainable groundwater resources management.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Isótopos de Nitrogênio/análise , Nitratos/química , Monitoramento Ambiental/métodos , Esterco , Teorema de Bayes , Poluentes Químicos da Água/química , Água Subterrânea/química , China
3.
Estuaries Coast ; : 1-24, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-37362863

RESUMO

Mediterranean coastal lagoons are affected by multiple threats (demographic pressures, eutrophication, climate change) expected to increase in the future and impact the ecosystem services provided. Conservation norms and scientific studies usually focus on large lagoons (> 0.5 km2) due to their economic importance, while they ignore smaller lagoons. These are poorly understood and often unprotected, despite their prevalence within the Mediterranean region and their importance. Qualitative and quantitative characterisation of small lagoons, in terms of functioning and sensitivity to global and local changes, are needed to develop appropriate management strategies. For this purpose, this work provides the first inventory of all Corsican lagoons and has investigated three of them of small size (Arasu, Santa Giulia, Balistra), characterised by contrasting anthropogenic contexts (highly modified/disturbed, medium disturbance, quasi-pristine). At the regional level, 91 of the 95 lagoons identified are < 0.5 km2, making Corsica a good example for the study of small Mediterranean lagoons. The three case studies showed differences in their seasonal biogeochemical cycles and phytoplankton communities (biomass, diversity, photosynthetic efficiency). Arasu and Santa Giulia lagoons showed an increase in watershed urbanisation (+ 12% and + 6% in 30 years), high phytoplankton biomass, low diversity and blooms of potentially harmful dinoflagellates. Conversely, Balistra lagoon showed a good status overall, but some anthropogenic pollution sources within its watershed. This study demonstrates the importance of small lagoons at regional and Mediterranean scale, and provides knowledge on studied local sites but also potential applications elsewhere. The importance of an integrated approach considering lagoons within their adjacent connected systems (watershed and sea) and anthropogenic contexts is highlighted. Supplementary Information: The online version contains supplementary material available at 10.1007/s12237-023-01182-1.

4.
Sci Total Environ ; 879: 163138, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37001654

RESUMO

The primary goal of paleoflood hydrology is to estimate the frequency and magnitude of past floods. Botanical evidence, and particularly scars on trees, has been used repeatedly as paleostage indicators to reconstruct peak discharges and flood height. Yet, these reconstructions depend on the presence of visible scars on tree stems which tend to be masked as trees grow older. Here, we estimated flood magnitude using an alternative approach based on growth disturbances in tree-ring series, tree positions and the minimal discharge necessary to submerge the root collar of a tree as estimated by hydraulic modeling. We tested the reliability of this newly developed approach by using the traditional scar-based reconstruction as a benchmark. To this end, we sampled 60 trees showing evidence of flood damage on their stems along a 787-m long segment of the Asco river (Corsica, France). Based on 440 growth disturbances dated in tree-ring series, we reconstructed 28 floods between 1759 and 2020 and 18 during the 20th century. Using the two-dimensional Iber hydraulic model and detailed topographic data of the study site obtained from UAV imagery, we estimated that peak discharges of the 28 reconstructed events ranged between 10 and 210 m3s-1, with 200 m3s-1 being considered as the threshold for extreme floods. Not only do the scar-based and root collar submersion approaches yield similar results, findings are also clearly in line with the sparse information available from historical archives and short gauge station records on past floods. The unprecedented length and depth of the record presented here opens new avenues for climate change and flood impact research.

5.
J Contam Hydrol ; 251: 104098, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36404424

RESUMO

Implementing sustainable groundwater resources management in coastal areas is challenging due to the negative impacts of anthropogenic stressors and various interactions between groundwater and surface water. This study focuses on nitrate contamination and transport via groundwater-surface water exchange in a Mediterranean coastal area (Guerbes-Senhadja region, Algeria) that is heavily affected by anthropogenic activities. A multi-tracer approach, integrating hydrogeochemical and isotopic tracers (δ2HH2O, δ18OH2O, 3H, δ15NNO3 and δ18ONO3), is combined with a Bayesian isotope mixing model (MixSIAR) to (i) elucidate the nitrate sources and their apportionments in water systems, and (ii) describe potential interactions between groundwater and surface water. Results from nitrate isotopic composition and the MixSIAR model show that nitrate concentrations mainly originate from sewage and manure sources. Nitrate derived from the sewage is attributed to urban and rural wastewater discharge, whereas nitrate derived from the manure is related to animal manure used to fertilise agricultural areas. High apportionments of nitrate-based atmospheric precipitation are identified in groundwater and surface water; a finding that is specific to this study. The multi-origin stresses combined with evidence of interactions between surface water and groundwater contribute to negatively impacting large parts of the study coastal area. The outcomes of this study are expected to contribute to sustainable management of coastal ecosystems by drawing more attention towards groundwater use and protection. Furthermore, this study may improve scientists' ability to predict the behavior of anthropogenically impacted coastal ecosystems and help decision-makers elsewhere to prepare suitable environmental strategies for other coastal ecosystems currently undergoing an early stage of groundwater resources deterioration.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Animais , Nitratos/análise , Água , Esgotos , Esterco , Ecossistema , Teorema de Bayes , Argélia , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Água Subterrânea/química , Óxidos de Nitrogênio
6.
Sci Total Environ ; 851(Pt 1): 158153, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988595

RESUMO

This study focuses on coastal aquifers subject to uncontrolled land use development by investigating the combined effects of seawater intrusion and nitrate contamination. The research is undertaken in a Mediterranean coastal agricultural area (Plain of the El-Nil River, Algeria), where water resources are heavily impacted by anthropogenic activities. A multi-tracer approach, integrating hydrogeochemical and isotopic tracers (δ2HH2O, δ18OH2O, δ15NNO3 and δ18ONO3), is combined with a hydrochemical facies evolution diagram, and a Bayesian isotope mixing model (MixSIAR) to assess seawater contamination with its inland intrusion, and distinguish the nitrate sources and their apportionment. Results show that seawater intrusion is circumscribed to the sector neighboring the Mediterranean Sea, with two influencing functions including classic inland intrusion through the aquifer, and upstream seawater impact through the river mouth connected to the Mediterranean Sea. Groundwater and surface water samples reveal nitrate concentrations above the natural baseline threshold, suggesting anthropogenic influence. Results from nitrate isotopic composition, NO3 and Cl concentrations, and the MixSIAR model show that nitrate concentrations chiefly originate from sewage and manure sources. Nitrate derived from the sewage is related to wastewater discharge, whereas nitrate derived from the manure is attributed to an excessive use of animal manure to fertilise agricultural areas. The dual negative impact of seawater intrusion and nitrate contamination degrades water quality over a large proportion of the study area. The outcomes of this study are expected to contribute to effective and sustainable water resources management in the Mediterranean coastal area. Furthermore, this study may improve scientists' ability to predict the combined effect of various anthropogenic stressors on coastal environments and help decision-makers elsewhere to prepare suitable environmental strategies for other regions currently undergoing an early stage of water resources deterioration.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Argélia , Animais , Teorema de Bayes , Monitoramento Ambiental/métodos , Água Subterrânea/química , Isótopos , Esterco , Nitratos/análise , Rios , Água do Mar , Esgotos , Águas Residuárias , Poluentes Químicos da Água/análise
7.
Environ Sci Pollut Res Int ; 29(39): 59414-59432, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35386077

RESUMO

The present study first describes the variations in concentrations of 12 chemical elements in groundwater relative to salinity levels in Southern Quebec (Canada) groundwater systems, and then uses this data to develop an empirical predictive model for evaluating groundwater chemical composition relative to salinity levels. Data is drawn from a large groundwater chemistry database containing 2608 samples. Eight salinity classes were established from lowest to highest chloride (Cl) concentrations. Graphical analyses were applied to describe variations in major, minor, and trace element concentrations relative to salinity levels. Results show that the major elements were found to be dominant in the lower salinity classes, whereas Cl becomes dominant at the highest salinity classes. For each of the major elements, a transitional state was identified between domination of the major elements and domination of Cl. This transition occurred at a different level of salinity for each of the major elements. Except for Si, the minor elements Ba, B, and Sr generally increase relative to the increase of Cl. The highest Mn concentrations were found to be associated with only the highest levels of Cl, whereas F was observed to be more abundant than Mn. Based on this analysis of the data, a correlation table was established between salinity level and concentrations of the chemical constituents. We thus propose a predictive empirical model, identifying a profile of the chemical composition of groundwater relative to salinity levels, to help homeowners and groundwater managers evaluate groundwater quality before resorting to laborious and costly laboratory analyses.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Cloretos/análise , Monitoramento Ambiental/métodos , Água Subterrânea/química , Quebeque , Salinidade , Poluentes Químicos da Água/análise
8.
Sci Total Environ ; 746: 141203, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32795761

RESUMO

This study investigates the multiple contamination sources of a coastal Mediterranean aquifer in northeastern Algeria that is bordered by two rivers and neighboring densely populated areas. Hydrogeochemical and isotopic groundwater characterization is carried out, including the analyses of major elements, water stable isotopes δ2H-H2O and δ18O-H2O, and stable isotopes of nitrate δ15N-NO3 and δ18O-NO3, and then integrated into the history of land use over the study area. Groundwater nitrate concentrations ranging from 1.6 to 235 mg/L with a median value of 69 mg/L are evidence of the degradation of groundwater quality induced by anthropogenic sources. The combined of δ15N-NO3 and δ18O-NO3 ratios showed that nitrate in groundwater is attributable to (i) the uncontrolled development of inadequate private sanitation systems over the study area, and (ii) the unsafe application of animal manure to fertilize crops. Very active saltwater intrusion is confirmed by several hydrogeochemical indicators. Interestingly, the intrusion mechanism appears to be more complex than a direct intrusion from the Mediterranean Sea. During the high-water period, saltwater intrusion may also originate from the two rivers bordering the aquifer, via upstream migration of seawater through the river mouths. The heavier ratios in δ2H-H2O and δ18O-H2O of surface water collected from the rivers suggest that water from the Mediterranean Sea is mixing with water in the rivers. Multi-source contamination not only contributes to complex chemical reactions within the aquifer, but also contributes, via the cumulative effect of the various sources, to affecting large parts of the study area. The present study may serve as a warning to the effect that historical land-use practices may exert seriously deleterious impacts on groundwater quality and greatly limit conditions for the sustainable management of Mediterranean coastal areas.

9.
Environ Sci Pollut Res Int ; 26(6): 5251-5266, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29429112

RESUMO

This study investigates the spatiotemporal variability of major and trace elements, dissolved organic carbon (DOC), total dissolved solids (TDS), and suspended particulate matter (SPM) in surface waters of several hydrosystems of the Loire River watershed in France. In particular, this study aims to delineate the impact of the abovementioned water physicochemical parameters on natural iron and manganese physical speciation (homoaggregation/heteroaggregation) among fine colloidal and dissolved (< 10 nm), colloidal (10-450 nm) and particulate (> 450 nm) phases in Loire River watershed. Results show that the chemistry of the Loire River watershed is controlled by two end members: magmatic and metamorphic petrographic context on the upper part of the watershed; and sedimentary rocks for the middle and low part of the Loire. The percentage of particulate Fe and Mn increased downstream concurrent with the increase in SPM and major cations concentration, whereas the percentage of colloidal Fe and Mn decreased downstream. Transmission electron microscopy analyses of the colloidal and particulate fractions (from the non-filtered water sample) revealed that heteroaggregation of Fe and Mn rich natural nanoparticles and natural organic matter to the particulate phase is the dominant mechanism. The heteroaggregation controls the partitioning of Fe and Mn in the different fractions, potentially due to the increase in the ionic strength, and divalent cations concentration downstream, and SPM concentration. These findings imply that SPM concentration plays an important role in controlling the fate and behavior of Fe and Mn in various sized fractions. Graphical abstract Physical speciation by heteroaggregation of (Fe-Mn) compounds: high [SPM] → [Fe-Mn] particulate faction; low {SPM] → [Fe-Mn] colloid-dissolved fraction.


Assuntos
Metais/análise , Material Particulado/análise , Poluentes Químicos da Água/análise , Coloides/química , Monitoramento Ambiental , França , Ferro/análise , Ferro/química , Manganês/análise , Metais/química , Material Particulado/química , Rios , Poluentes Químicos da Água/química
10.
Isotopes Environ Health Stud ; 54(2): 147-167, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28691511

RESUMO

Stable isotopes of hydrogen (2H) and oxygen (18O) of the water molecule were used to assess the relationship between precipitation, surface water and groundwater in a large Russia/Ukraine trans-boundary river basin. Precipitation was sampled from November 2013 to February 2015, and surface water and groundwater were sampled during high and low flow in 2014. A local meteoric water line was defined for the Ukrainian part of the basin. The isotopic seasonality in precipitation was evident with depletion in heavy isotopes in November-March and an enrichment in April-October, indicating continental and temperature effects. Surface water was enriched in stable water isotopes from upstream to downstream sites due to progressive evaporation. Stable water isotopes in groundwater indicated that recharge occurs mainly during winter and spring. A one-year data set is probably not sufficient to report the seasonality of groundwater recharge, but this survey can be used to identify the stable water isotopes framework in a weakly gauged basin for further hydrological and geochemical studies.


Assuntos
Deutério/análise , Água Subterrânea/análise , Hidrologia/métodos , Isótopos de Oxigênio/análise , Monitoramento Ambiental/métodos , Água Subterrânea/química , Rios/química , Federação Russa , Estações do Ano , Ucrânia
11.
Environ Int ; 73: 10-21, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25080069

RESUMO

Due to the current analytical processes that are not able to measure all the pharmaceutical molecules and to the high costs and the consumption of time to sample and analyze PhACs, models to calculate Predicted Environmental Concentrations (PECs) have been developed. However a comparison between MECs and PECs, taking into account the methods of calculations and peculiarly the parameters included in the calculation (consumption data, pharmacokinetic parameters, elimination rate in STPs and in the environment), is necessary to assess the validity of PECs. MEC variations of sixteen target PhACs [acetaminophen (ACE), amlodipine (AML), atenolol (ATE), caffeine (CAF), carbamazepine (CAR), doxycycline (DOX), epoxycarbamazepine (EPO), fluvoxamine (FLU), furosemide (FUR), hydrochlorothiazide (HYD), ifosfamide (IFO), losartan (LOS), pravastatin (PRA), progesterone (PROG), ramipril (RAM), trimetazidine (TRI)] have been evaluated during one hydrological cycle, from October 2011 to October 2012 and compared to PECs calculated by using an adaptation of the models proposed by Heberer and Feldmann (2005) and EMEA (2006). Comparison of PECs and MECS has been achieved for six molecules: ATE, CAR, DOX, FUR, HYD and PRA. DOX, FUR and HYD present differences between PECs and MECs on an annual basis but their temporal evolutions follow the same trends. PEC evaluation for these PhACs could then be possible but need some adjustments of consumption patterns, pharmacokinetic parameters and/or mechanisms of (bio)degradation. ATE, CAR and PRA are well modeled; PECs can then be used as reliable estimation of concentrations without any reserve.


Assuntos
Monitoramento Ambiental/métodos , Preparações Farmacêuticas/análise , Poluentes Químicos da Água/análise , Modelos Teóricos , Reprodutibilidade dos Testes
12.
Environ Sci Pollut Res Int ; 19(3): 847-57, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21948144

RESUMO

PURPOSE: A former wood exploitation revealing high Cu and As concentration of the soils served as a case study for assisted phytoextraction. METHOD: P-spiked Linz-Donawitz (LD) slag was used as a soil additive to improve physico-chemical soil properties and in situ stabilize Cu and other trace metals in a sandy Cu-contaminated soil (630 mg kg⁻¹ soil). The LD slag was incorporated into the contaminated soil to consist four treatments: 0% (T1), 1% (T2), 2% (T3), and 4% (T4). A similar uncontaminated soil was used as a control (CTRL). After a 1-month reaction period, potted soils were used for a 2-week growth experiment with dwarf beans. RESULTS: Soil pH increased with the incorporation rate of LD slag. Similarly the soil electrical conductivity (EC, in millisiemens per centimetre) is ameliorated. Bean plants grown on the untreated soil (T1) showed a high phytotoxicity. All incorporation rates of LD slag increased the root and shoot dry weight yields compared to the T1. The foliar Ca concentration of beans was enhanced for all LD slag-amended soil, while the foliar Mg, K, and P concentrations were not increased. Foliar Cu, Zn, and Cr concentrations of beans decreased with the LD slag incorporation rate. CONCLUSIONS: P-spiked LD slag incorporation into polluted soil allow the bean growth and foliar Ca concentration, but also to reduce foliar Cu concentration below its upper critical value avoiding an excessive soil EC and Zn deficiency. This dual effect can be of interest for soil remediation at larger scale.


Assuntos
Cobre/química , Fertilizantes/análise , Resíduos Industriais/análise , Fosfatos/química , Poluentes do Solo/química , Solo/química , Oligoelementos/química , Cálcio/análise , Fenômenos Químicos , Cromo/análise , Cobre/análise , Condutividade Elétrica , Recuperação e Remediação Ambiental/métodos , Concentração de Íons de Hidrogênio , Metalurgia , Phaseolus/química , Phaseolus/crescimento & desenvolvimento , Fosfatos/análise , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/química , Brotos de Planta/crescimento & desenvolvimento , Poluentes do Solo/análise , Solubilidade , Espectrometria por Raios X , Oligoelementos/análise , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA