Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 131: 104233, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33561672

RESUMO

When observing a particular image or object, one's perception depends upon prior expectations, memory, and cognitive abilities. It is hypothesized that cognitive processing in the form of top-down or bottom-up processing could be determined via analysis of the eye fixation scan path. To assess the variations in scan paths, 7 subjects underwent 5 change-detection trials. During each trial, they were presented with a specific set of images via a MATLAB program, in which the original image alternated with a modified image consisting of a single change. An open-source program called GazeRecorder was used to track the subject's eye movements and to record the eye fixations. The scan path was then analyzed through the use of a 4 by 4 grid pattern superimposed on the image to determine the subject's eye fixation distribution pattern in terms of Boxes Viewed and Concentration within a single area. It was determined that higher Concentration was positively correlated with faster Detection Speed (R = 0.84), while higher number of Boxes Viewed was negatively correlated with Detection Speed (R = -0.71). Among the subjects, the more optimal scan paths were found in those with a balance between Concentration and Boxes Viewed, as subjects with a more balanced approach had the greatest Accuracy (p = 0.02). This indicates an optimal scan path involves both top-down and bottom-up processing to more efficiently identify a change. Moreover, the methodology developed in this study could be used in the home or clinic for quantitative assessment of improvement following therapy in patients with neurological deficits.


Assuntos
Movimentos Oculares , Fixação Ocular , Humanos , Processos Mentais , Percepção Visual
2.
Comput Biol Med ; 105: 39-45, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30579136

RESUMO

A study was conducted to investigate the underlying mechanisms involved in the dynamics of body motions during the golf swing. A series of model simulation programs were developed in OpenSim to control the characteristics of the biomechanical model of the body. The resultant model parameters were put in an Excel file, which allowed these parameters to be modified. OpenSim model simulation run was paused at various points of the golf swing and screenshots were taken. MATLAB was used to find the positional value of the center of clubface for each screenshot and the Euclidean distances of the clubhead position between poses. A series of simulation trials were then conducted using various time increments between the poses in order to calculate the clubhead velocities. Three of these trials were selected to illustrate the swing patterns of players of varying skill levels ranging from basic beginner to highly-skilled. These simulations using OpenSim can serve as a platform for understanding the dynamics of body motions in sports and biomedicine.


Assuntos
Golfe/fisiologia , Modelos Biológicos , Movimento , Adulto , Fenômenos Biomecânicos , Humanos , Masculino
3.
Comput Biol Med ; 89: 76-83, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28787648

RESUMO

A reliable and practical app for mobile devices was developed to detect driver drowsiness. It consisted of two main components: a Haar cascade classifier, provided by a computer vision framework called OpenCV, for face/eye detection; and a dedicated JAVA software code for image processing that was applied over a masked region circumscribing the eye. A binary threshold was performed over the masked region to provide a quantitative measure of the number of white pixels in the sclera, which represented the state of eye opening. A continuously low white-pixel count would indicate drowsiness, thereby triggering an alarm to alert the driver. This system was successfully implemented on: (1) a static face image, (2) two subjects under laboratory conditions, and (3) a subject in a vehicle environment.


Assuntos
Condução de Veículo , Processamento de Imagem Assistida por Computador/métodos , Aplicativos Móveis , Esclera , Fases do Sono , Humanos , Masculino
4.
Comput Biol Med ; 70: 106-118, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26820446

RESUMO

The aim of this article is to present an updated unifying theory of the mechanisms underlying eye growth and myopia development. A series of model simulation programs were developed to illustrate the mechanism of eye growth regulation and myopia development. Two fundamental processes are presumed to govern the relationship between physiological optics and eye growth: genetically pre-programmed signaling and blur feedback. Cornea/lens is considered to have only a genetically pre-programmed component, whereas eye growth is considered to have both a genetically pre-programmed and a blur feedback component. Moreover, based on the Incremental Retinal-Defocus Theory (IRDT), the rate of change of blur size provides the direction for blur-driven regulation. The various factors affecting eye growth are shown in 5 simulations: (1 - unregulated eye growth): blur feedback is rendered ineffective, as in the case of form deprivation, so there is only genetically pre-programmed eye growth, generally resulting in myopia; (2 - regulated eye growth): blur feedback regulation demonstrates the emmetropization process, with abnormally excessive or reduced eye growth leading to myopia and hyperopia, respectively; (3 - repeated near-far viewing): simulation of large-to-small change in blur size as seen in the accommodative stimulus/response function, and via IRDT as well as nearwork-induced transient myopia (NITM), leading to the development of myopia; (4 - neurochemical bulk flow and diffusion): release of dopamine from the inner plexiform layer of the retina, and the subsequent diffusion and relay of neurochemical cascade show that a decrease in dopamine results in a reduction of proteoglycan synthesis rate, which leads to myopia; (5 - Simulink model): model of genetically pre-programmed signaling and blur feedback components that allows for different input functions to simulate experimental manipulations that result in hyperopia, emmetropia, and myopia. These model simulation programs (available upon request) can provide a useful tutorial for the general scientist and serve as a quantitative tool for researchers in eye growth and myopia.


Assuntos
Olho/crescimento & desenvolvimento , Olho/fisiopatologia , Modelos Biológicos , Miopia/fisiopatologia , Humanos
6.
Ophthalmic Physiol Opt ; 28(4): 334-44, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18565089

RESUMO

The purpose of this experiment was to determine the effect of type and magnitude of retinal defocus on golf putting accuracy, and on the related eye, head, and putter movements. Eye, head, and putter movements were assessed objectively along with putting accuracy in 16 young adult, visually normal inexperienced golfers during a fixed 9-foot golf putt. Convex spherical (+0.50 D, +1.00 D, +1.50 D, +2.00 D, +10.00 D) and cylindrical (+1.00 D x 90, +2.00 D x 90) lenses were added binocularly to create various types and magnitudes of retinal defocus. Putting accuracy was significantly reduced only under the highest spherical blur lens condition (+10.00 D). No significant differences were found between any other lens conditions for eye, head or putter movements. Small amounts of spherical and astigmatic retinal defocus had a minimal impact on overall golf putting performance, except for putting accuracy under the highest blur condition. This is consistent with the findings of related studies. For a fixed putting distance, factors other than quality of the retinal image, such as blur adaptation and motor learning, appeared to be sufficient to maintain a high level of motor performance.


Assuntos
Acomodação Ocular/fisiologia , Golfe , Retina/fisiologia , Adulto , Análise de Variância , Desenho de Equipamento , Movimentos Oculares/fisiologia , Feminino , Fixação Ocular/fisiologia , Movimentos da Cabeça/fisiologia , Humanos , Masculino , Movimento , Optometria/instrumentação , Optometria/métodos , Desempenho Psicomotor , Refração Ocular/fisiologia , Software , Equipamentos Esportivos
7.
Comput Biol Med ; 37(7): 930-46, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17150204

RESUMO

Previous theories of myopia development involved subtle and complex processes such as the sensing and analyzing of chromatic aberration, spherical aberration, spatial gradient of blur, or spatial frequency content of the retinal image, but they have not been able to explain satisfactorily the diverse experimental results reported in the literature. On the other hand, our newly proposed incremental retinal-defocus theory (IRDT) has been able to explain all of these results. This theory is based on a relatively simple and direct mechanism for the regulation of ocular growth. It states that a time-averaged decrease in retinal-image defocus area decreases the rate of release of retinal neuromodulators, which decreases the rate of retinal proteoglycan synthesis with an associated decrease in scleral structural integrity. This increases the rate of scleral growth, and in turn the eye's axial length, which leads to myopia. Our schematic analysis has provided a clear explanation for the eye's ability to grow in the appropriate direction under a wide range of experimental conditions. In addition, the theory has been able to explain how repeated cycles of nearwork-induced transient myopia leads to repeated periods of decreased retinal-image defocus, whose cumulative effect over an extended period of time results in an increase in axial growth that leads to permanent myopia. Thus, this unifying theory forms the basis for understanding the underlying retinal and scleral mechanisms of myopia development.


Assuntos
Fixação Ocular/fisiologia , Miopia/etiologia , Miopia/fisiopatologia , Retina/fisiopatologia , Animais , Engenharia Biomédica , Simulação por Computador , Olho/crescimento & desenvolvimento , Olho/patologia , Humanos , Modelos Biológicos , Miopia/patologia
8.
ScientificWorldJournal ; 3: 122-37, 2003 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-12806125

RESUMO

The objective of this article is to determine the effect of three different putting grips (conventional, cross-hand, and one-handed) on variations in eye and head movements during the putting stroke. Seven volunteer novice players, ranging in age from 21 to 22 years, participated in the study. During each experimental session, the subject stood on a specially designed platform covered with artificial turf and putted golf balls towards a standard golf hole. The three different types of grips were tested at two distances: 3 and 9 ft. For each condition, 20 putts were attempted. For each putt, data were recorded over a 3-s interval at a sampling rate of 100 Hz. Eye movements were recorded using a helmet-mounted eye movement monitor. Head rotation about an imaginary axis through the top of the head and its center-of-rotation was measured by means of a potentiometer mounted on a fixed frame and coupled to the helmet. Putter-head motion was measured using a linear array of infrared phototransistors embedded in the platform. The standard deviation (STD, relative to the initial level) was calculated for eye and head movements over the duration of the putt (i.e., from the beginning of the backstroke, through the forward stroke, to impact). The averaged STD for the attempted putts was calculated for each subject. Then, the averaged STDs and other data for the seven subjects were statistically compared across the three grip conditions. The STD of eye movements were greater (p < 0.1) for conventional than cross-hand (9 ft) and one-handed (3 and 9 ft) grips. Also, the STD of head movements were greater (p < 0.1; 3 ft) for conventional than cross-hand and one-handed grips. Vestibulo-ocular responses associated with head rotations could be observed in many 9 ft and some 3 ft putts. The duration of the putt was significantly longer (p < 0.05; 3 and 9 ft) for the one-handed than conventional and cross-hand grips. Finally, performance, or percentage putts made, was significantly better (p < 0.05; 9 ft) for cross-hand than conventional grip. The smaller variations, both in eye movements during longer putts and head movements during shorter putts, using cross-hand and one-handed grips may explain why some golfers, based on their playing experience, prefer these over the conventional grip. Also, the longer duration for the one-handed grip, which improves tempo, may explain why some senior players prefer the long-shaft (effectively one-handed grip) putter.


Assuntos
Movimentos Oculares/fisiologia , Golfe/fisiologia , Mãos/fisiologia , Movimentos da Cabeça/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Retroalimentação Fisiológica/fisiologia , Feminino , Mãos/inervação , Humanos , Masculino , Fatores de Tempo
9.
Brain Res ; 944(1-2): 56-64, 2002 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-12106665

RESUMO

Previous dichoptic experiments showed that dissimilar stationary pattern stimuli resulted in the perception of binocular rivalry, whereas oppositely-directly moving grating stimuli resulted in alternating optokinetic nystagmus (OKN) and the perception of binocular motion rivalry. The present study extended these dichoptic motion experiments by introducing obliquely-oriented targets with the aim of probing further the cortical mechanisms underlying binocular processing of motion. Two-dimensional eye movements were recorded along with their subjective perceptual responses. The stimuli consisted of two tilted gratings, one moving diagonally upwards and to the right (UR, 45 degrees ) and the other diagonally upwards and to the left (UL, 135 degrees ), which were presented dichoptically to subjects under two stimulus modes. For the non-exchange mode, the OKN slow phases exhibited three types of directional shifts. Two of these directional shifts tracked the stimuli (i.e. UR or UL), whereas the third moved purely upwards (UP). Since physically there was no upward-moving target, the OKN and perceptual responses appeared to be associated with a perceptual interocular grouping of the two dichoptic stimuli in their reassembled vector-sum direction. The OKN shifts were also found to be highly correlated with the psychophysical responses of motion perception. For the rapid-exchange mode, in which the stimuli were rapidly exchanged between the two eyes, the OKN slow phases exhibited primarily two types of directional shifts, UR and UL, but no UP responses for most subjects. It also appeared that these two coherent motion percepts, UL and UR, were interocularly regrouped from the exchanged stimuli. Moreover, the lack of perceptual grouping to create an UP response in the rapid-exchange mode indicated that temporal integration of at least 200 ms was necessary for the development of a reassembled vector-sum-direction motion percept. The findings under both stimulus modes support the stimulus-feature rivalry hypothesis, in which higher cortical centers mediate interocular perceptual grouping and the associated motor response.


Assuntos
Córtex Cerebral/fisiologia , Movimentos Oculares/fisiologia , Lateralidade Funcional/fisiologia , Nistagmo Optocinético/fisiologia , Desempenho Psicomotor/fisiologia , Disparidade Visual/fisiologia , Vias Visuais/fisiologia , Humanos , Contração Muscular/fisiologia , Inibição Neural/fisiologia , Músculos Oculomotores/inervação , Músculos Oculomotores/fisiologia , Estimulação Luminosa , Tempo de Reação/fisiologia
10.
Bull Math Biol ; 64(2): 285-99, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11926118

RESUMO

The function of the accommodation system is to provide a clear retinal image of objects in the visual scene. The system was previously thought to be under simple continuous (i.e., single mode of operation) feedback control, but recent research has shown that it is under discontinuous (i.e., two stimulus-dependent modes of operation) feedback control by means of fast and slow processes. A model using MATLAB/SIMULINK was developed to simulate this dual-mode behavior. It consists of fast and slow components in a feedback loop. The fast component responds to step target disparity with an open-loop movement to nearly reach the desired level, and then the slow component uses closed-loop feedback to reduce the residual error to an acceptable small level. For slow ramps, the slow component provides smooth tracking of the stimulus, whereas for fast ramps, the fast component provides accurate staircase-like step responses. Simulation of this model using a variety of stimuli, including pulse, step, ramp, and sinusoid, showed good agreement with experimental results. Thus, this represents the first dynamic model of accommodation that can accurately simulate the complex dual-mode behavior seen experimentally. The biological significance of this model is that it can be used to quantitatively analyze clinical deficits such as amblyopia and accommodative insufficiency.


Assuntos
Acomodação Ocular/fisiologia , Modelos Biológicos , Simulação por Computador , Retroalimentação/fisiologia , Humanos , Retina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA