Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Research (Wash D C) ; 7: 0418, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040920

RESUMO

The prevalence of food allergies is increasing dramatically and causing serious public health concerns. Notably, melatonin metabolism imbalance in patients with food allergies; however, the role of melatonin in food allergies remains unclear. Here, we demonstrated that melatonin suppresses food allergy responses and reprograms the gut microbiota of food-allergic mice, while melatonin aggravates food allergy during gut microbiota depletion. Mechanistically, melatonin boosts the degranulation of mast cells by up-regulating the expression of membrane high-affinity immunoglobulin E (IgE) receptor (FcεRI). Melatonin increases the mRNA expression of Rabenosyn-5 (a component of factors for endosome recycling and Rab interactions) through melatonin receptor 2 (MT2)-extracellular signal-regulated kinase (ERK) signaling, thereby driving the recycling of FcεRI and elevating the abundance of membrane FcεRI. Likewise, the inhibition of MT2 attenuates melatonin-induced food allergy in mice with gut microbiota depletion. Collectively, our finding provides insights into the pathogenesis of food allergies and provides a potential therapeutic target for the prevention and treatment of food allergies.

2.
Gut Microbes ; 16(1): 2313769, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38353638

RESUMO

Melatonin has various physiological effects, such as the maintenance of circadian rhythms, anti-inflammatory functions, and regulation of intestinal barriers. The regulatory functions of melatonin in gut microbiota remodeling have also been well clarified; however, the role of gut microbiota in regulating host melatonin production remains poorly understood. To address this, we studied the contribution of gut microbiota to host melatonin production using gut microbiota-perturbed models. We demonstrated that antibiotic-treated and germ-free mice possessed diminished melatonin levels in the serum and elevated melatonin levels in the colon. The influence of the intestinal microbiota on host melatonin production was further confirmed by fecal microbiota transplantation. Notably, Lactobacillus reuteri (L. R) and Escherichia coli (E. coli) recapitulated the effects of gut microbiota on host melatonin production. Mechanistically, L. R and E. coli activated the TLR2/4/MyD88/NF-κB signaling pathway to promote expression of arylalkylamine N-acetyltransferase (AANAT, a rate-limiting enzyme for melatonin production), and MyD88 deficiency in colonic epithelial cells abolished the influence of intestinal microbiota on colonic melatonin production. Collectively, we revealed a specific underlying mechanism of gut microbiota to modulate host melatonin production, which might provide novel therapeutic ideas for melatonin-related diseases.


Assuntos
Microbioma Gastrointestinal , Melatonina , Animais , Camundongos , Escherichia coli , Fator 88 de Diferenciação Mieloide/genética , Proteínas Adaptadoras de Transdução de Sinal , Células Epiteliais
3.
J Pineal Res ; 75(2): e12899, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37477135

RESUMO

Food allergy affects more than 500 million people in the world, and its prevalence is increasing at an alarming rate causing serious public health concerns; however, prevention and treatment methods are still under investigation and are relatively scarce so far. Insights on pathophysiology reveal a complex interplay of the immune cells (e.g., DCs, T cells, and B cells) resulting in allergy or tolerance. Studies have shown that melatonin metabolisms are altered in patients with allergic diseases, suggesting that melatonin might impact allergic diseases. Notably, melatonin can orchestrate the differentiation and function of immune cells. Additionally, the disease severities of many allergic diseases and the function of the immune system exhibit circadian rhythmicity. Therefore, melatonin, a rhythm regulator, may also act indirectly on the immune system through the circadian clock to regulate food allergies. Herein, we reviewed the impacts of melatonin on food allergy and its underlying regulatory mechanisms, providing a theoretical reference for melatonin as effective means of prevention and treatment for food allergy in the future.


Assuntos
Relógios Circadianos , Hipersensibilidade Alimentar , Melatonina , Humanos , Melatonina/metabolismo , Ritmo Circadiano/fisiologia , Relógios Circadianos/fisiologia , Hipersensibilidade Alimentar/tratamento farmacológico
4.
Front Vet Sci ; 9: 1043842, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387380

RESUMO

This study aimed to evaluate the effects of maternal nucleotide (NT) supplementation on intestinal morphology and immune function in lipopolysaccharide-challenged newborn piglets. At 85 d gestation, 12 sows were selected and assigned to two groups: the CON group (basal diet, n = 6) and the NT group (basal diet with 1 g/kg NT mixture, n = 6). After parturition, newborn piglets were collected without suckling. Piglets from the CON group were intraperitoneally injected with sterile saline or lipopolysaccharide (LPS, 10 mg/kg body weight), and divided into the C-CON (n = 6) and C-LPS groups (n = 6). Piglets from the NT group received the same treatment and were divided into the N-CON (n = 6) and N-LPS groups (n = 6). The blood and small intestinal samples of piglets were collected 1 h after injection. The results showed that: (1) maternal NT supplementation increased the concentrations of serum complement C3 and C4 (P < 0.05), and suppressed the increase in serum hypersensitive C-reactive protein in LPS-challenged newborn piglets (P < 0.05); (2) maternal NT supplementation increased the villus height and the ratio of villus height to crypt depth in the duodenum of newborn piglets (P < 0.05) and inhibited the LPS-induced decrease in the villus height in the jejunum and ileum (P < 0.05). (3) The LPS-induced increased levels of interleukin-6 in the jejunum and tumor necrosis factor-α in the ileum of newborn piglets were suppressed by maternal NT supplementation (P < 0.05). (4) In the jejunum of newborn piglets, maternal NT supplementation inhibited the LPS-induced increase in toll-like receptor 4 (TLR4) mRNA and protein expression (P < 0.05) and the decrease of nuclear factor-κB inhibitor α (IκBα) protein expression (P < 0.05). In the ileum, piglets had a lower nuclear factor-κB (NFκB) mRNA expression in the NT groups than the CON groups (P < 0.05), and maternal NT supplementation suppressed the decrease of IκBα mRNA in LPS-treated piglets (P < 0.05). In conclusion, maternal NT supplementation could promote the intestinal development and immune function of newborn piglets, and may improve LPS-induced intestinal inflammatory responses via the TLR4/IκBα/NFκB pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA