Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(1): 284-298, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38059659

RESUMO

The evolution of the structure and composition of the system of particles in two Ce0.62Zr0.38O2-supported bimetallic catalysts based on Au and a 4d metal (Ru or Pd) under high temperature conditions and different reducing and oxidizing environments has been followed by means of Identical Location Scanning Transmission Electron Microscopy (IL-STEM). As an alternative to in situ microscopy, this technique offers valuable insights into the structural modifications occurring in chemical environments with the characteristics of a macro-scale reactor. By tracking exactly the same areas on a large number of metallic entities, it has been possible to reveal the influence of particle size and the nature of the redox environment on the temperature-driven mobilization of the different metals involved. Thus, oxidizing environments evidenced a much higher capacity to mobilize the three metals, preferentially Au. Moreover, the typical storage conditions (under air) of catalysts during the prolonged exposure time has been proved to induce significant modifications in these bimetallic systems, even at room temperature. Regardless of the type of redox environment, bimetallic systems showed better thermal resistance, which demonstrates a beneficial effect of the second metal. In summary, IL-STEM is an invaluable and complementary methodology for characterizing heterogeneous catalysts under realistic reaction conditions and is within the reach of most laboratories.

2.
J Phys Chem Lett ; 14(27): 6315-6320, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37409744

RESUMO

Bimetallic nanostructures composed of gold (Au) and palladium (Pd) have garnered increased interest for their applications in heterogeneous catalysis. This study reports a simple strategy for manufacturing Au@Pd bimetallic branched nanoparticles (NPs), which offer a tunable optical response, using polyallylamine-stabilized branched AuNPs as template cores for Pd overgrowth. The palladium content can be altered by manipulating the concentration of PdCl42- and ascorbic acid (AA) that are injected, which permit an overgrowth of the Pd shell up to ca. 2 nm thick. The homogeneous distribution of Pd at the surfaces of Au NPs can be carried out regardless of their size or branching degree, which allows for an adjustment of the plasmon response in the near-infrared (NIR) spectral range. As a proof of concept, the nanoenzymatic activity of pure gold and gold-palladium NPs was compared, exploring their peroxidase-like activity in the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). The bimetallic AuPd NPs demonstrate an increase in the catalytic properties attributed to the presence of palladium at the surface of gold.

3.
Small Methods ; 5(10): e2100550, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34927936

RESUMO

Mn oxides are promising materials for thermochemical heat store, but slow reoxidation of Mn3 O4 to Mn2 O3 limits efficiency. In contrast, (Mn1- x Fex )3 O4 oxides show an enhanced transformation rate, but fundamental understanding of the role played by Fe cations is lacking. Here, nanoscale characterization of Fe-doped Mn oxides is performed to elucidate how Fe incorporation influences solid-state transformations. X-ray diffraction reveals the presence of two distinct spinel phases, cubic jacobsite and tetragonal hausmannite for samples with more than 10% of Fe. Chemical mapping exposes wide variation of Fe content between grains, but an even distribution within crystallites. Due to the similarities of spinels structures, high-resolution scanning transmission electron microscopy cannot discriminate unambiguously between them, but Fe-enriched crystallites likely correspond to jacobsite. In situ X-ray absorption spectroscopy confirms that increasing Fe content up to 20% boosts the reoxidation rate, leading to the transformation of Mn2+  in the spinel phase to Mn3+ in bixbyite. Extended X-ray absorption fine structure shows that FeO length is larger than MnO, but both electron energy loss spectroscopy and X-ray absorption near edge structure indicate that iron is always present as Fe3+  in octahedral sites. These structural modifications may facilitate ionic diffusion during bixbyite formation.

4.
ACS Appl Mater Interfaces ; 13(32): 38061-38073, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34365790

RESUMO

In this work, a simple one-step thermal oxidation process was established to achieve a significant surface increase in {110} and {111} nanofacets on well-defined, pure and Pr-doped, ceria nanocubes. More importantly, without changing most of the bulk properties, this treatment leads to a remarkable boost of their enzymatic activities: from the oxidant (oxidase-like) to antioxidant (hydroxyl radical scavenging) as well as the paraoxon degradation (phosphatase-like) activities. Such performance improvement might be due to the thermally generated sawtoothlike {111} nanofacets and defects, which facilitate the oxygen mobility and the formation of oxygen vacancies on the surface. Finally, possible mechanisms of nanoceria as artificial enzymes have been proposed in this manuscript. Considering the potential application of ceria as artificial enzymes, this thermal treatment may enable the future design of highly efficient nanozymes without changing the bulk composition.


Assuntos
Antioxidantes/química , Cério/química , Nanopartículas/química
5.
Mater Sci Eng C Mater Biol Appl ; 97: 768-775, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30678966

RESUMO

Hybrid composite bioparticles modified with stable and radioactive gold nanoparticles were prepared via reduction of tetrachloroauric acid within Lactobacillus rhamnosus cells. The resulting biocomposite material was characterized using a number of physicochemical techniques, including microscopic, spectroscopic and thermal methods. The bacterial particles act as a type of template for gold deposition. Gold nanoparticles of approximately 3.7 nm diameter are formed and are uniformly distributed within the bacterial cell, including its hydrogel outer shell. For radioactive gold-198, the ß- radiation emitted from the biocomposite particles can be used for therapeutic purposes, as demonstrated in vitro in cancer cell cultures. The antitumor activity can be further enhanced by incorporation of doxorubicin, a cytostatic drug, within composite particles. The cell viability data indicate the considerable synergistic effect of ß- radiation and doxorubicin on breast cancer cells (MCF-7). The antitumor action of the biocomposite particles is very promising for new anticancer therapies.


Assuntos
Portadores de Fármacos/química , Ouro/química , Nanopartículas Metálicas/química , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Partículas beta , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Doxorrubicina/química , Doxorrubicina/farmacologia , Humanos , Lactobacillus/química , Lactobacillus/metabolismo , Células MCF-7 , Microscopia Confocal , Oxirredução , Tamanho da Partícula
6.
Nanoscale ; 10(45): 21197-21208, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30417187

RESUMO

Colloidal chemistry of nanomaterials experienced a tremendous development in the last decades. In the course of the journey 0D nanoparticles, 1D nanowires, and 2D nanosheets have been synthesized. They have in common to possess a simple topology. We present a colloidal synthesis strategy for lead iodide nanorings, with a non-trivial topology. First, two-dimensional structures were synthesized in nonanoic acid as the sole solvent. Subsequently, they underwent an etching process in the presence of trioctylphosphine, which determines the size of the hole in the ring structure. We propose a mechanism for the formation of lead iodide nanosheets which also explains the etching of the two-dimensional structures starting from the inside, leading to nanorings. In addition, we demonstrate a possible application of the as-prepared nanorings in photodetectors. These devices are characterized by a fast response, high gain values, and a linear relation between photocurrent and incident light power intensity over a large range. The synthesis approach allows for inexpensive large-scale production of nanorings with tunable properties.

7.
Nanomaterials (Basel) ; 8(9)2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154374

RESUMO

The selective oxidation of veratryl alcohol (VA), a model compound of lignin, with oxygen molecules to produce veratraldehyde (VAld) was studied over monometallic Au, Pd, and bimetallic Au:Pd nanoparticles supported on a Ce0.62Zr0.38O2 mixed oxide for the first time. These bimetallic Au-Pd catalysts with Au:Pd molar ratios from 0.4 to 4.3 were synthesized by the sol-immobilization method. Furthermore, all the catalysts were characterized by inductively coupled plasma-atomic emission spectroscopy (ICP-AES), N2 physisorption, X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy-high angle annular dark field (STEM-HAADF) imaging, energy dispersive X-ray spectroscopy (EDXS), and temperature programmed reduction (TPR) techniques. A synergistic effect between gold and palladium was observed over all the bimetallic catalysts in a wide range of studied Au:Pd ratios. Remarkably, the optimum Au:Pd ratio for this reaction was 1.4 with a turnover frequency of almost six times larger than for the monometallic gold and palladium catalysts. Selectivity to veratraldehyde was higher than 99% for the monometallic Au, Pd, and all the bimetallic Au-Pd catalysts, and stayed constant during the reaction time.

8.
ACS Appl Mater Interfaces ; 9(22): 18595-18608, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28513131

RESUMO

Ceria nanocubes (NC) modified with increasing concentrations of praseodymium (5, 10, 15, and 20 mol %) have been successfully synthesized by a hydrothermal method. The as-synthesized Pr-modified ceria nanocubes exhibit an enhanced oxidase-like activity on the organic dye TMB within a wide range of concentrations and durations. The oxidase activity increases with increasing Pr amounts in Pr-modified ceria nanocubes within the investigated concentration range. Meanwhile, these Pr-modified ceria nanocubes also show higher reducibility than pure ceria nanocubes. The kinetics of their oxidase mimetic activity is fitted with the Michaelis-Menten equation. A mechanism has been proposed on how the Pr incorporation could affect the energy level of the bands in ceria and hence facilitate the TMB oxidation reaction. The presence of Pr3+ species on the surface also contributes to the increasing activity of the Pr-modified ceria nanocubes present higher oxidase activity than pure ceria nanocubes.


Assuntos
Praseodímio/química , Cério , Oxirredução , Oxirredutases
10.
J Electron Microsc (Tokyo) ; 58(5): 289-94, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19525368

RESUMO

Organic crystals, such as phthalocyanine nanocrystal, were successfully hybridized with Pt nanoparticles using a nanohybridization technique. The presence of highly dispersed Pt nanoparticles on the surface of phthalocyanine was confirmed by the combination of transmission electron microscopy and three-dimensional electron tomography. Catalytic activities of hybridized samples with different degrees of dispersions were also examined as oxygen reduction reactivity (ORR) with a linear potential sweep method. It was found that oxygen reduction activity increased with increasing Pt dispersion, and reasonably high ORR was observed on Pt-dispersed phthalocyanine nanocrystal even at 2 wt% Pt loading.

11.
Nano Lett ; 9(4): 1395-400, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19245236

RESUMO

CeO(2) nanotubes have been grown electrochemically using a porous alumina membrane as a template. The resulting material has been characterized by means of scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy, high-angle annular dark-field scanning transmission electron microscopy tomography, high-resolution electron microscopy (HREM), and electron energy loss spectroscopy. According to SEM, the outer diameter of the nanotubes corresponds to the pore size (200 nm) of the alumina membrane, and their length ranges between 30 and 40 microm. HREM images have revealed that the width of the nanotube walls is about 6 nm. The catalytic activity of these novel materials for the CO oxidation reaction is compared to that of a polycrystalline powder CeO(2) sample prepared by a conventional route. The activity of the CeO(2) nanotubes is shown to be in the order of 400 times higher per gram of oxide at 200 degrees C (77.2 x 10(-2) cm(3) CO(2) (STP)/(gxs) for the nanotube-shaped CeO(2) and 0.16 x 10(-2) cm(3) CO(2) (STP)/(gxs) for the powder CeO(2)).

13.
Chem Soc Rev ; 36(9): 1477-94, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17660880

RESUMO

Nanotomography is a technique of growing importance in the investigation of the shape, size, distribution and elemental composition of a wide variety of materials that are of central interest to investigators in the physical and biological sciences. Nanospatial factors often hold the key to a deeper understanding of the properties of matter at the nanoscale level. With recent advances in tomography, it is possible to achieve experimental resolution in the nanometre range, and to determine with elemental specificity the three-dimensional distribution of materials. This critical review deals principally with electron tomography, but it also outlines the power and future potential of transmission X-ray tomography, and alludes to other related techniques.


Assuntos
Microscopia Eletrônica de Transmissão e Varredura/métodos , Nanotecnologia/métodos , Difração de Raios X/métodos , Computadores
14.
Nano Lett ; 7(2): 421-5, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17298010

RESUMO

Colloidal cerium oxide (CeO2) nanocrystals prepared by hydrothermal synthesis were characterized by high-resolution transmission electron microscopy (HRTEM) and three-dimensional electron tomography (3D-ET). HRTEM images of individual CeO2 nanocrystals were then simulated by Blochwave and multislice simulations to determine the atomic arrangement and terminating atoms. The edge length distributions were between 5.0 and 8.0 nm with an average edge length of 6.7 nm. The HRTEM images showed that the CeO2 particles were slightly truncated revealing {220} facets. 3D-ET revealed that the CeO2 nanocrystals exposed predominantly {200} cubic facets. The nanocrystals were truncated at the corners exposing {111} octahedral facets and at the edges {220} dodecahedral facets. Furthermore, 3D-ET revealed the presence of some tetragonal-shaped CeO2 nanocrystals.

15.
J Colloid Interface Sci ; 305(1): 204-8, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17069827

RESUMO

Platinum nanoparticles were incorporated within the pore system of ordered mesoporous carbon (OMC) by impregnating the carbon with a water-in-oil (w/o) microemulsion containing dissolved platinum salt followed by reduction of the platinum ions in situ inside the carbon pore system. The procedure provides preparation of metallic nanoparticles from hydrophilic precursors inside the hydrophobic carbon support structure with simultaneous control of the maximum metal particle size. Electron tomography was used to verify the presence of platinum nanoparticles inside the carbon material.

17.
Phys Chem Chem Phys ; 8(20): 2421-30, 2006 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-16710490

RESUMO

Ti(1-x)Sn(x)O(2) nanocrystalline materials employed for photocatalysis have been characterised by means of X-ray diffraction, Raman, X-ray absorption (XANES and EXAFS) and UV-Vis spectroscopy and high resolution transmission electron microscopy. Single-phase samples with anatase or rutile type structures and similar tin contents permitted a separate study of the effect of Sn(4+) ions on these crystalline forms, whereas materials composed of anatase and rutile mixtures were used to investigate the distribution of the dopant cations when both phases coexist. The results obtained from the single-phase doped TiO(2) samples indicate that the presence of tin causes a different effect when doping anatase or rutile in both their structural and electronic properties. While a random substitution of Sn(4+) for Ti(4+) seems plausible for the rutile phase, some kind of gradient in Sn(4+) concentration is possible in anatase. On the other hand, when anatase and rutile coexist, effects of doping are visible in both phases. Regarding chemical composition, a homogeneous distribution of tin was found in both calcined and hydrothermal multiphase samples. Photocatalytic experiments show that both tin-doping and coexistence of different phases have a beneficial effect on the activity of the catalysts.


Assuntos
Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Fotoquímica/métodos , Compostos de Estanho/química , Estanho/química , Titânio/química , Catálise , Simulação por Computador , Condutividade Elétrica , Luz , Modelos Químicos , Conformação Molecular , Nanoestruturas/efeitos da radiação , Tamanho da Partícula , Relação Estrutura-Atividade , Estanho/efeitos da radiação , Compostos de Estanho/efeitos da radiação , Titânio/efeitos da radiação
18.
Langmuir ; 22(11): 5160-7, 2006 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-16700608

RESUMO

The catalytic performance of cluster-derived PtFe/SiO(2) bimetallic catalysts for the oxidation of CO has been examined in the absence and presence of H(2) (PROX) and compared to that of Pt/SiO(2). PtFe(2)/SiO(2) and Pt(5)Fe(2)/SiO(2) samples were prepared from PtFe(2)(COD)(CO)(8) and Pt(5)Fe(2)(COD)(2)(CO)(12) organometallic cluster precursors, respectively. FTIR data indicate that both clusters can be deposited intact on the SiO(2) support. The clusters remained weakly bonded to the SiO(2) surface and could be extracted with CH(2)Cl(2) without any significant changes in their structure. Subsequent heating in H(2) led to complete decarbonylation of the supported clusters at approximately 350 degrees C and the formation of Pt-Fe nanoparticles with sizes in the 1-2 nm range, as indicated by HRTEM imaging. A few larger nanoparticles enriched in Pt were also observed, indicating that a small fraction of the deposited clusters were segregated to the individual components following the hydrogen treatment. A higher degree of metal dispersion and more homogeneous mixing of the two metals were observed during HRTEM/XEDS analysis with the cluster-derived samples, as compared to a PtFe/SiO(2) catalyst prepared through a conventional impregnation route. Furthermore, the cluster-derived PtFe(2)/SiO(2) and Pt(5)Fe(2)/SiO(2) samples were more active than Pt/SiO(2) and the conventionally prepared PtFe/SiO(2) sample for the oxidation of CO in air. However, substantial deactivation was also observed, indicating that the properties of the Pt-Fe bimetallic sites in the cluster-derived samples were altered by exposure to the reactants. The Pt(5)Fe(2)/SiO(2) sample was also more active than Pt/SiO(2) for PROX with a selectivity of approximately 92% at 50 degrees C. In this case, the deactivation with time on stream was substantially slower, indicating that the highly reducing environment under the PROX conditions helps maintain the properties of the active Pt-Fe bimetallic sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA