Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
PLoS One ; 14(2): e0211584, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30716090

RESUMO

The Cpx-envelope stress system regulates the expression of virulence factors in many Gram-negative pathogens. In Salmonella enterica serovar Typhimurium deletion of the sensor kinase CpxA but not of the response regulator CpxR results in the down regulation of the key regulator for invasion, HilA encoded by the Salmonella pathogenicity island 1 (SPI-1). Here, we provide evidence that cpxA deletion interferes with dephosphorylation of CpxR resulting in increased levels of active CpxR and consequently in misregulation of target genes. 14 potential operons were identified to be under direct control of CpxR. These include the virulence determinants ecotin, the omptin PgtE, and the SPI-2 regulator SsrB. The Tat-system and the PocR regulator that together promote anaerobic respiration of tetrathionate on 1,2-propanediol are also under direct CpxR control. Notably, 1,2-propanediol represses hilA expression. Thus, our work demonstrates for the first time the involvement of the Cpx system in a complex network mediating metabolism and virulence function.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Quinases/metabolismo , Salmonella typhi/metabolismo , Salmonella typhi/patogenicidade , Anaerobiose , Regulação Bacteriana da Expressão Gênica , Genômica , Mutação , Fosforilação , Salmonella typhi/genética , Virulência
3.
BMC Microbiol ; 17(1): 197, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-28923010

RESUMO

BACKGROUND: The aminoglycoside antibiotic gentamicin was supposed to induce a crosstalk between the Cpx- and the Arc-two-component systems (TCS). Here, we investigated the physical interaction of the respective TCS components and compared the results with their respective gene expression and protein abundance. The findings were interpreted in relation to the global proteome profile upon gentamicin treatment. RESULTS: We observed specific interaction between CpxA and ArcA upon treatment with the aminoglycoside gentamicin using Membrane-Strep-tagged protein interaction experiments (mSPINE). This interaction was neither accompanied by detectable phosphorylation of ArcA nor by activation of the Arc system via CpxA. Furthermore, no changes in absolute amounts of the Cpx- and Arc-TCS could be determined with the sensitive single reaction monitoring (SRM) in presence of gentamicin. Nevertheless, upon applying shotgun mass spectrometry analysis after treatment with gentamicin, we observed a reduction of ArcA ~ P-dependent protein synthesis and a significant Cpx-dependent alteration in the global proteome profile of E. coli. CONCLUSIONS: This study points to the importance of the Cpx-TCS within the complex regulatory network in the E. coli response to aminoglycoside-caused stress.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Gentamicinas/metabolismo , Proteínas Quinases/metabolismo , Aminoglicosídeos/metabolismo , Proteínas da Membrana Bacteriana Externa/efeitos dos fármacos , Proteínas de Bactérias , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Mapas de Interação de Proteínas , Proteínas Quinases/efeitos dos fármacos , Proteoma/análise , Proteínas Repressoras/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Estresse Fisiológico , Fatores de Transcrição
4.
Microbiologyopen ; 5(4): 582-96, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27039284

RESUMO

Two-component systems (TCS) play a pivotal role for bacteria in stress regulation and adaptation. However, it is not well understood how these systems are modulated to meet bacterial demands. Especially, for those TCS using an accessory protein to integrate additional signals, no data concerning the role of the accessory proteins within the coordination of the response is available. The Cpx envelope stress two-component system, composed of the sensor kinase CpxA and the response regulator CpxR, is orchestrated by the periplasmic protein CpxP which detects misfolded envelope proteins and inhibits the Cpx system in unstressed cells. Using selected reaction monitoring, we observed that the amount of CpxA and CpxR, as well as their stoichiometry, are only marginally affected, but that a 10-fold excess of CpxP over CpxA is needed to switch off the Cpx system. Moreover, the relative quantification of the proteome identified not only acid stress response as a new indirect target of the Cpx system, but also suggests a general function of the Cpx system for cell wall stability.


Assuntos
Adaptação Fisiológica/fisiologia , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Quinases/metabolismo , Estresse Fisiológico/fisiologia , Escherichia coli/genética , Espectrometria de Massas , Proteoma/análise , Proteômica/métodos , Fatores de Transcrição/metabolismo
5.
PLoS One ; 11(2): e0149187, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26882435

RESUMO

Two-component systems are the major means by which bacteria couple adaptation to environmental changes. All utilize a phosphorylation cascade from a histidine kinase to a response regulator, and some also employ an accessory protein. The system-wide signaling fidelity of two-component systems is based on preferential binding between the signaling proteins. However, information on the interaction kinetics between membrane embedded histidine kinase and its partner proteins is lacking. Here, we report the first analysis of the interactions between the full-length membrane-bound histidine kinase CpxA, which was reconstituted in nanodiscs, and its cognate response regulator CpxR and accessory protein CpxP. Using surface plasmon resonance spectroscopy in combination with interaction map analysis, the affinity of membrane-embedded CpxA for CpxR was quantified, and found to increase by tenfold in the presence of ATP, suggesting that a considerable portion of phosphorylated CpxR might be stably associated with CpxA in vivo. Using microscale thermophoresis, the affinity between CpxA in nanodiscs and CpxP was determined to be substantially lower than that between CpxA and CpxR. Taken together, the quantitative interaction data extend our understanding of the signal transduction mechanism used by two-component systems.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Nanopartículas/química , Proteínas Quinases/metabolismo , Transdução de Sinais , Trifosfato de Adenosina/metabolismo , Proteínas de Escherichia coli/química , Histidina Quinase , Bicamadas Lipídicas/metabolismo , Nanopartículas/ultraestrutura , Ligação Proteica , Proteínas Quinases/química
6.
Biochemistry ; 54(23): 3670-6, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-25993101

RESUMO

The Cpx stress response system is induced by various environmental and cellular stimuli. It is also activated in Escherichia coli strains lacking the major phospholipid, phosphatidylethanolamine (PE). However, it is not known whether CpxA directly senses changes in the lipid bilayer or the presence of misfolded proteins due to the lack of PE in their membranes. To address this question, we used an in vitro reconstitution system and vesicles with different lipid compositions to track modulations in the activity of CpxA in different lipid bilayers. Moreover, the Cpx response was validated in vivo by monitoring expression of a PcpxP-gfp reporter in lipid-engineered strains of E. coli. Our combined data indicate that CpxA responds specifically to different lipid compositions.


Assuntos
Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Bicamadas Lipídicas/química , Modelos Moleculares , Fosfatidiletanolaminas/química , Proteínas Quinases/química , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Acholeplasma laidlawii/enzimologia , Acholeplasma laidlawii/metabolismo , Arabidopsis/enzimologia , Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cardiolipinas/química , Cardiolipinas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genes Reporter , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosfatidiletanolaminas/metabolismo , Fosfatidilgliceróis/química , Fosfatidilgliceróis/metabolismo , Fosforilação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Propriedades de Superfície
7.
PLoS One ; 9(9): e107383, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25207645

RESUMO

Two-component systems, consisting of an inner membrane sensor kinase and a cytosolic response regulator, allow bacteria to respond to changes in the environment. Some two-component systems are additionally orchestrated by an accessory protein that integrates additional signals. It is assumed that spatial and temporal interaction between an accessory protein and a sensor kinase modifies the activity of a two-component system. However, for most accessory proteins located in the bacterial envelope the mechanistic details remain unclear. Here, we analyzed the interaction between the periplasmic accessory protein CpxP and the sensor kinase CpxA in Escherichia coli in dependency of three specific stimuli. The Cpx two-component system responds to envelope stress and plays a pivotal role for the quality control of multisubunit envelope structures, including type three secretion systems and pili of different pathogens. In unstressed cells, CpxP shuts off the Cpx response by a yet unknown mechanism. We show for the first time the physical interaction between CpxP and CpxA in unstressed cells using bacterial two-hybrid system and membrane-Strep-tagged protein interaction experiments. In addition, we demonstrate that a high salt concentration and the misfolded pilus subunit PapE displace CpxP from the sensor kinase CpxA in vivo. Overall, this study provides clear evidence that CpxP modulates the activity of the Cpx system by dynamic interaction with CpxA in response to specific stresses.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/genética , Periplasma/metabolismo , Proteínas Quinases/genética , Transdução de Sinais , Sistemas de Secreção Bacterianos/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Proteínas de Membrana/metabolismo , Pressão Osmótica , Ligação Proteica , Proteínas Quinases/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo
8.
J Bacteriol ; 196(5): 1084-93, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24375102

RESUMO

The DctSR two-component system of Bacillus subtilis controls the expression of the aerobic C4-dicarboxylate transporter DctA. Deletion of DctA leads to an increased dctA expression. The inactivation of DctB, an extracellular binding protein, is known to inhibit the expression of dctA. Here, interaction between the sensor kinase DctS and the transporter DctA as well as the binding protein DctB was demonstrated in vivo using streptavidin (Strep) or His protein interaction experiments (mSPINE or mHPINE), and the data suggest that DctA and DctB act as cosensors for DctS. The interaction between DctS and DctB was also confirmed by the bacterial two-hybrid system (BACTH). In contrast, no indication was obtained for a direct interaction between the transporter DctA and the binding protein DctB. Activity levels of uptake of [(14)C]succinate by bacteria that expressed DctA from a plasmid were similar in the absence and the presence of DctB, demonstrating that the binding protein DctB is not required for transport. Thus, DctB is involved not in transport but in cosensing with DctS, highlighting DctB as the first example of a TRAP-type binding protein that acts as a cosensor. The simultaneous presence of DctS/DctB and DctS/DctA sensor pairs and the lack of direct interaction between the cosensors DctA and DctB indicate the formation of a tripartite complex via DctS. It is suggested that the DctS/DctA/DctB complex forms the functional unit for C4-dicarboxylate sensing in B. subtilis.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Ácidos Dicarboxílicos/metabolismo , Proteínas de Membrana/metabolismo , Bacillus subtilis/classificação , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Ácidos Dicarboxílicos/química , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica , Proteínas de Membrana/genética , Plasmídeos , Ligação Proteica
9.
J Vis Exp ; (81): e50810, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24300168

RESUMO

Membrane proteins are essential for cell viability and are therefore important therapeutic targets(1-3). Since they function in complexes(4), methods to identify and characterize their interactions are necessary(5). To this end, we developed the Membrane Strep-protein interaction experiment, called Membrane-SPINE(6). This technique combines in vivo cross-linking using the reversible cross-linker formaldehyde with affinity purification of a Strep-tagged membrane bait protein. During the procedure, cross-linked prey proteins are co-purified with the membrane bait protein and subsequently separated by boiling. Hence, two major tasks can be executed when analyzing protein-protein interactions (PPIs) of membrane proteins using Membrane- SPINE: first, the confirmation of a proposed interaction partner by immunoblotting, and second, the identification of new interaction partners by mass spectrometry analysis. Moreover, even low affinity, transient PPIs are detectable by this technique. Finally, Membrane-SPINE is adaptable to almost any cell type, making it applicable as a powerful screening tool to identify PPIs of membrane proteins.


Assuntos
Cromatografia de Afinidade/métodos , Reagentes de Ligações Cruzadas/química , Immunoblotting/métodos , Espectrometria de Massas/métodos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Formaldeído/química , Proteínas de Membrana/isolamento & purificação , Mapeamento de Interação de Proteínas , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Coloração pela Prata/métodos
10.
FEMS Microbiol Lett ; 326(1): 12-22, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22092888

RESUMO

The Cpx-envelope stress system coordinates the expression and assembly of surface structures important for the virulence of Gram-negative pathogenic bacteria. It is comprised of the membrane-anchored sensor kinase CpxA, the cytosolic response regulator CpxR and the accessory protein CpxP. Characteristic of the group of two-component systems, the Cpx system responds to a broad range of stimuli including pH, salt, metals, lipids and misfolded proteins that cause perturbation in the envelope. Moreover, the Cpx system has been linked to inter-kingdom signalling and bacterial cell death. However, although signal specificity has been assumed, for most signals the mechanism of signal integration is not understood. Recent structural and functional studies provide the first insights into how CpxP inhibits CpxA and serves as sensor for misfolded pilus subunits, pH and salt. Here, we summarize and reflect on the current knowledge on signal integration by the Cpx-envelope stress system.


Assuntos
Proteínas de Bactérias/fisiologia , Membrana Celular/fisiologia , Bactérias Gram-Negativas/fisiologia , Proteínas de Membrana/fisiologia , Proteínas Quinases/fisiologia , Estresse Fisiológico , Proteínas de Bactérias/química , Membrana Celular/química , Membrana Celular/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Bactérias Gram-Negativas/patogenicidade , Proteínas de Membrana/química , Dobramento de Proteína , Proteínas Quinases/química , Transdução de Sinais
11.
Proteomics ; 11(10): 2124-8, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21472855

RESUMO

Membrane proteins are crucial for many essential cellular processes. As membrane proteins function in complexes, methods to detect and to characterize membrane protein-protein interactions are undoubtedly required. Therefore, we developed the "Membrane-Strep-tagged protein interaction experiment" (Membrane-SPINE) that combines the specific purification of a Strep-tagged membrane protein with the reversible fixation of protein complexes by formaldehyde cross-linking. In combination with MS analysis, we suggest Membrane-SPINE as a powerful tool to identify unknown interaction partners of membrane proteins in vivo.


Assuntos
Proteínas de Membrana/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteínas/análise , Proteômica/métodos , Estreptavidina/metabolismo , Marcadores de Afinidade , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Formaldeído , Immunoblotting , Espectrometria de Massas , Ligação Proteica , Proteínas/química , Proteínas/metabolismo , Salmonella typhimurium , Estreptavidina/química
12.
Res Microbiol ; 162(4): 405-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21349329

RESUMO

In Gram-negative bacteria, the Cpx signal transduction pathway (CpxAR) has an overall regulatory function, but the mechanism of its activation is still poorly understood. Here we investigated the impact of the periplasmic sensor domain of CpxA on signalling by mutational analysis in vitro. Substitutions (R33C and L38P) in the N-terminal region significantly increased CpxA autophosphorylation, whereas a substitution in a predicted beta sheet (E92K), which impaired the inhibitory effect of the auxiliary CpxP protein, had no significant effect on catalytic activity. Thus, our data suggest different regions on the periplasmic domain of CpxA, which impact to modulate signal transduction.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Transdução de Sinais , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Fosforilação , Proteínas Quinases/genética , Estrutura Terciária de Proteína
13.
J Biol Chem ; 286(11): 9805-14, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21239493

RESUMO

Bacteria are equipped with two-component systems to cope with environmental changes, and auxiliary proteins provide response to additional stimuli. The Cpx two-component system is the global modulator of cell envelope stress in gram-negative bacteria that integrates very different signals and consists of the kinase CpxA, the regulator CpxR, and the dual function auxiliary protein CpxP. CpxP both inhibits activation of CpxA and is indispensable for the quality control system of P pili that are crucial for uropathogenic Escherichia coli during kidney colonization. How these two essential biological functions of CpxP are linked is not known. Here, we report the crystal structure of CpxP at 1.45 Å resolution with two monomers being interdigitated like "left hands" forming a cap-shaped dimer. Our combined structural and functional studies suggest that CpxP inhibits the kinase CpxA through direct interaction between its concave polar surface and the negatively charged sensor domain on CpxA. Moreover, an extended hydrophobic cleft on the convex surface suggests a potent substrate recognition site for misfolded pilus subunits. Altogether, the structural details of CpxP provide a first insight how a periplasmic two-component system inhibitor blocks its cognate kinase and is released from it.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Fímbrias Bacterianas/química , Proteínas de Membrana/química , Proteínas Periplásmicas/química , Inibidores de Proteínas Quinases/química , Animais , Proteínas de Ligação a DNA , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
14.
Res Microbiol ; 160(6): 396-400, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19596441

RESUMO

In Escherichia coli, the CpxRA sensor regulator system is induced by a variety of signals, including pH, osmolarity, metals and misfolded envelope proteins. Here, we analyzed the effect of the folding defective maltose binding protein MalE219 on the reconstituted Cpx signalling pathway in detail. Surprisingly, autokinase and phosphatase activities of the reconstituted CpxA-6His protein remained unaffected, whereas phosphotransfer to CpxR became activated by MalE219. Since stimulation occurred only in CpxA-containing proteoliposomes, our data provide the first biochemical indication of allosteric stimulation due to direct contact between MalE219 and the sensor kinase CpxA. Consequently, we suggest that this direct interaction is a new mechanism enabling the Cpx pathway to sense misfolded proteins.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Proteínas de Escherichia coli/metabolismo , Dobramento de Proteína , Proteínas Quinases/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas Ligantes de Maltose , Mutação , Fosforilação , Proteínas Quinases/genética , Transdução de Sinais
15.
J Biol Chem ; 282(12): 8583-93, 2007 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-17259177

RESUMO

In Escherichia coli the Cpx sensor regulator system senses different kinds of envelope stress and responds by triggering the expression of periplasmic folding factors and proteases. It consists of the membrane-anchored sensor kinase CpxA, the response regulator CpxR, and the periplasmic protein CpxP. The Cpx pathway is induced in vivo by a variety of signals including pH variation, osmotic stress, and misfolded envelope proteins and is inhibited by overproduced CpxP. Because it is not clear how the Cpx pathway is able to recognize and correspond to so many different signals we overproduced, solubilized, purified, and incorporated the complete membrane-integral CpxA protein into proteoliposomes to analyze its biochemical properties in more detail. Autokinase and phosphotransfer activities of the reconstituted CpxA-His6 protein were stimulated by KCl. NaCl also stimulated the activities but to a lesser extent. Other osmotic active solutes as glycine betaine, sucrose, and proline had no effect. The system was further characterized by testing for susceptibility to sensor kinase inhibitors. Among these, Closantel inhibited the activities of solubilized but not of the reconstituted CpxA-His6 protein. We further analyzed the effect of CpxP on CpxA activities. Purified tagless CpxP protein reduced the phosphorylation status of CpxA to 50% but had no effect on CpxA phosphotransfer or phosphatase activities. As the in vitro system excludes the involvement of other factors our finding is the first biochemical evidence for direct protein-protein interaction between the sensor kinase CpxA and the periplasmic protein CpxP resulting in a down-regulation of the autokinase activity of CpxA.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas de Escherichia coli/fisiologia , Escherichia coli/metabolismo , Proteínas de Membrana/fisiologia , Proteínas Quinases/fisiologia , Betaína/farmacologia , Histidina Quinase , Concentração de Íons de Hidrogênio , Lipossomos/química , Osmose , Cloreto de Potássio/química , Prolina/farmacologia , Desnaturação Proteica , Dobramento de Proteína , Proteínas Quinases/química , Transdução de Sinais , Cloreto de Sódio/química
16.
Mol Microbiol ; 50(5): 1579-89, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14651640

RESUMO

We previously characterized a defective-folding mutant of maltose-binding protein of Escherichia coli, MalE31, which formed periplasmic inclusion bodies. Here, we show that MalE31 aggregation does not affect bacterial growth at 30 degrees C but is lethal at 37 degrees C. Surprisingly, under mild heat shock conditions at 42 degrees C, inclusion bodies are degraded and bacterial growth is restored. One physiological consequence for the cells overproducing MalE31 was to induce an extracytoplasmic stress response by increasing the expression of the heat shock protease DegP via the CpxA/CpxR two-component signalling pathway. Furthermore, we show that the Cpx response is required to rescue the cells from the toxicity mediated by MalE31. Finally, expression of highly destabilized MalE variants that do not aggregate in the periplasm also induces the Cpx pathway, indicating that inclusion body formation is not necessary to activate this specific extracytoplasmic stress regulatory system.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Resposta ao Choque Térmico , Corpos de Inclusão/fisiologia , Periplasma/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Temperatura , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas Periplásmicas de Ligação/genética , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transdução de Sinais
17.
Res Microbiol ; 153(7): 399-404, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12405345

RESUMO

We previously characterized a defective-folding variant of the periplasmic maltose-binding protein, MalE31. To examine the alternative folding pathways open to the MalE31 precursor, we have analyzed the cellular fates of this aggregation-prone protein carrying altered signal sequences. Our results are most easily interpreted by a kinetic competition between exportation, folding, and degradation.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Mutação , Proteínas Periplásmicas de Ligação/química , Proteínas Periplásmicas de Ligação/metabolismo , Dobramento de Proteína , Transporte Biológico , Escherichia coli/genética , Escherichia coli/fisiologia , Proteínas de Escherichia coli/genética , Variação Genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Mutagênese Sítio-Dirigida , Proteínas Periplásmicas de Ligação/genética , Conformação Proteica , Sinais Direcionadores de Proteínas/genética , Frações Subcelulares/metabolismo
18.
Biochim Biophys Acta ; 1565(1): 64-72, 2002 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-12225853

RESUMO

The maltose ATP-binding cassette (ABC) transporter of Salmonella typhimurium is composed of a membrane-associated complex (MalFGK(2)) and a periplasmic substrate binding protein. To further elucidate protein-protein interactions between the subunits, we have studied the dissociation and reassembly of the MalFGK(2) complex at the level of purified components in proteoliposomes. First, we optimized the yield in purified complex protein by taking advantage of a newly constructed expression plasmid that carries the malK, malF and malG genes in tandem orientation. Incorporated in proteoliposomes, the complex exhibited maltose binding protein/maltose-dependent ATPase activity with a V(max) of 1.25 micromol P(i)/min/mg and a K(m) of 0.1 mM. ATPase activity was sensitive to vanadate and enzyme IIA(Glc), a component of the enterobacterial glucose transport system. The proteoliposomes displayed maltose transport activity with an initial rate of 61 nmol/min/mg. Treatment of proteoliposomes with 6.6 M urea resulted in the release of medium-exposed MalK subunits concomitant with the complete loss of ATPase activity. By adding increasing amounts of purified MalK to urea-treated proteoliposomes, about 50% of vanadate-sensitive ATPase activity relative to the control could be recovered. Furthermore, the phenotype of MalKQ140K that exhibits ATPase activity in solution but not when associated with MalFG was confirmed by reassembly with MalK-depleted proteoliposomes.


Assuntos
Transportadores de Cassetes de Ligação de ATP/biossíntese , Proteínas de Escherichia coli , Maltose/metabolismo , Proteínas de Transporte de Monossacarídeos/biossíntese , Salmonella typhimurium/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/isolamento & purificação , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Vetores Genéticos , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/isolamento & purificação , Proteolipídeos , Salmonella typhimurium/química , Salmonella typhimurium/genética , Ureia , Vanadatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA