Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38645015

RESUMO

The loading of replicative helicases constitutes an obligatory step in the assembly of DNA replication machineries. In eukaryotes, the MCM2-7 replicative helicase motor is deposited onto DNA by the origin recognition complex (ORC) and co-loader proteins as a head-to-head MCM double hexamer to license replication origins. Although extensively studied in the budding yeast model system, the mechanisms of origin licensing in higher eukaryotes remain poorly defined. Here, we use biochemical reconstitution and electron microscopy (EM) to reconstruct the human MCM loading pathway. Unexpectedly, we find that, unlike in yeast, ORC's Orc6 subunit is not essential for human MCM loading but can enhance loading efficiency. EM analyses identify several intermediates en route to MCM double hexamer formation in the presence and absence of Orc6, including an abundant DNA-loaded, closed-ring single MCM hexamer intermediate that can mature into a head-to-head double hexamer through different pathways. In an Orc6-facilitated pathway, ORC and a second MCM2-7 hexamer are recruited to the dimerization interface of the first hexamer through an MCM-ORC intermediate that is architecturally distinct from an analogous intermediate in yeast. In an alternative, Orc6-independent pathway, MCM double hexamer formation proceeds through dimerization of two independently loaded single MCM2-7 hexamers, promoted by a propensity of human MCM2-7 hexamers to dimerize without the help of other loading factors. This redundancy in human MCM loading pathways likely provides resilience against replication stress under cellular conditions by ensuring that enough origins are licensed for efficient DNA replication. Additionally, the biochemical reconstitution of human origin licensing paves the way to address many outstanding questions regarding DNA replication initiation and replication-coupled events in higher eukaryotes in the future.

2.
Protein Sci ; 32(12): e4814, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37861472

RESUMO

HIV-1 reverse transcriptase (RT) remains a key target for HIV drug development. As successful management of the disease requires lifelong treatment, the emergence of resistance mutations is inevitable, making development of new RT inhibitors, which remain effective against resistant variants crucial. To this end, previous computationally guided drug design efforts have resulted in catechol diether compounds, which inhibit wildtype RT with picomolar affinities and appear to be promising preclinical candidates. To confirm that these compounds remain potent against Y181C, a widespread mutation conferring resistance to first generation inhibitors, they were screened against the HIV-1 N119 clinical isolate, reported as a Y181C single mutant. In comparison to a molecular clone with the same mutation, N119 appears less susceptible to inhibition by our preclinical candidate compounds. A more detailed sequencing effort determined that N119 was misidentified and carries V106A in combination with Y181C. While both indolizine and naphthalene substituted catechol diethers are potent against the classical Y181C single mutant, the addition of V106A confers more resistance against the indolizine derivatives than the naphthalene derivatives. Crystal structures presented in this study highlight key features of the naphthyl group, which allow these compounds to remain potent in the double mutant, including stronger interactions with F227 and less reliance on V106 for stabilization of the ethoxy-uracil ring, which makes critical hydrogen bonds with other residues in the binding pocket.


Assuntos
Fármacos Anti-HIV , HIV-1 , Indolizinas , Inibidores da Transcriptase Reversa/farmacologia , Inibidores da Transcriptase Reversa/química , Transcriptase Reversa do HIV/química , Indolizinas/farmacologia , Catecóis/química , Catecóis/farmacologia , Naftalenos/farmacologia , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/química , Relação Estrutura-Atividade
3.
Nat Commun ; 13(1): 1059, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217664

RESUMO

The coordinated action of multiple replicative helicase loading factors is needed for the licensing of replication origins prior to DNA replication. Binding of the Origin Recognition Complex (ORC) to DNA initiates the ATP-dependent recruitment of Cdc6, Cdt1 and Mcm2-7 loading, but the structural details for timely ATPase site regulation and for how loading can be impeded by inhibitory signals, such as cyclin-dependent kinase phosphorylation, are unknown. Using cryo-electron microscopy, we have determined several structures of S. cerevisiae ORC·DNA·Cdc6 intermediates at 2.5-2.7 Å resolution. These structures reveal distinct ring conformations of the initiator·co-loader assembly and inactive ATPase site configurations for ORC and Cdc6. The Orc6 N-terminal domain laterally engages the ORC·Cdc6 ring in a manner that is incompatible with productive Mcm2-7 docking, while deletion of this Orc6 region alleviates the CDK-mediated inhibition of Mcm7 recruitment. Our findings support a model in which Orc6 promotes the assembly of an autoinhibited ORC·DNA·Cdc6 intermediate to block origin licensing in response to CDK phosphorylation and to avert DNA re-replication.


Assuntos
Proteínas de Ciclo Celular , Complexo de Reconhecimento de Origem , Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Microscopia Crioeletrônica , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , DNA/metabolismo , DNA Helicases/metabolismo , Replicação do DNA , Componente 7 do Complexo de Manutenção de Minicromossomo/genética , Complexo de Reconhecimento de Origem/metabolismo , Ligação Proteica , Origem de Replicação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA