Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1270531, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034554

RESUMO

Tomato spotted wilt orthotospovirus (TSWV) transmitted by thrips causes significant yield loss in peanut (Arachis hypogaea L.) production. Use of peanut cultivars with moderate field resistance has been critical for TSWV management. However, current TSWV resistance is often not adequate, and the availability of sources of tetraploid resistance to TSWV is very limited. Allotetraploids derived by crossing wild diploid species could help introgress alleles that confer TSWV resistance into cultivated peanut. Thrips-mediated TSWV screening identified two diploids and their allotetraploid possessing the AA, BB, and AABB genomes Arachis stenosperma V10309, Arachis valida GK30011, and [A. stenosperma × A. valida]4x (ValSten1), respectively. These genotypes had reduced TSWV infection and accumulation in comparison with peanut of pure cultivated pedigree. Transcriptomes from TSWV-infected and non-infected samples from A. stenosperma, A. valida, and ValSten1 were assembled, and differentially expressed genes (DEGs) following TSWV infection were assessed. There were 3,196, 8,380, and 1,312 significant DEGs in A. stenosperma, A. valida, and ValSten1, respectively. A higher proportion of genes decreased in expression following TSWV infection for A. stenosperma and ValSten1, whereas a higher proportion of genes increased in expression following infection in A. valida. The number of DEGs previously annotated as defense-related in relation to abiotic and biotic stress was highest in A. valida followed by ValSten1 and A. stenosperma. Plant phytohormone and photosynthesis genes also were differentially expressed in greater numbers in A. valida followed by ValSten1 and A. stenosperma, with over half of those exhibiting decreases in expression.

2.
BMC Genomics ; 24(1): 343, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37344773

RESUMO

BACKGROUND: The tobacco thrips (Frankliniella fusca Hinds; family Thripidae; order Thysanoptera) is an important pest that can transmit viruses such as the tomato spotted wilt orthotospovirus to numerous economically important agricultural row crops and vegetables. The structural and functional genomics within the order Thysanoptera has only begun to be explored. Within the > 7000 known thysanopteran species, the melon thrips (Thrips palmi Karny) and the western flower thrips (Frankliniella occidentalis Pergrande) are the only two thysanopteran species with assembled genomes. RESULTS: A genome of F. fusca was assembled by long-read sequencing of DNA from an inbred line. The final assembly size was 370 Mb with a single copy ortholog completeness of ~ 99% with respect to Insecta. The annotated genome of F. fusca was compared with the genome of its congener, F. occidentalis. Results revealed many instances of lineage-specific differences in gene content. Analyses of sequence divergence between the two Frankliniella species' genomes revealed substitution patterns consistent with positive selection in ~ 5% of the protein-coding genes with 1:1 orthologs. Further, gene content related to its pest status, such as xenobiotic detoxification and response to an ambisense-tripartite RNA virus (orthotospovirus) infection was compared with F. occidentalis. Several F. fusca genes related to virus infection possessed signatures of positive selection. Estimation of CpG depletion, a mutational consequence of DNA methylation, revealed that F. fusca genes that were downregulated and alternatively spliced in response to virus infection were preferentially targeted by DNA methylation. As in many other insects, DNA methylation was enriched in exons in Frankliniella, but gene copies with homology to DNA methyltransferase 3 were numerous and fragmented. This phenomenon seems to be relatively unique to thrips among other insect groups. CONCLUSIONS: The F. fusca genome assembly provides an important resource for comparative genomic analyses of thysanopterans. This genomic foundation allows for insights into molecular evolution, gene regulation, and loci important to agricultural pest status.


Assuntos
Tisanópteros , Animais , Tisanópteros/fisiologia , Insetos , Produtos Agrícolas , Evolução Molecular , Epigênese Genética
3.
Nat Ecol Evol ; 7(4): 557-569, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36941345

RESUMO

Sweat bees have repeatedly gained and lost eusociality, a transition from individual to group reproduction. Here we generate chromosome-length genome assemblies for 17 species and identify genomic signatures of evolutionary trade-offs associated with transitions between social and solitary living. Both young genes and regulatory regions show enrichment for these molecular patterns. We also identify loci that show evidence of complementary signals of positive and relaxed selection linked specifically to the convergent gains and losses of eusociality in sweat bees. This includes two pleiotropic proteins that bind and transport juvenile hormone (JH)-a key regulator of insect development and reproduction. We find that one of these proteins is primarily expressed in subperineurial glial cells that form the insect blood-brain barrier and that brain levels of JH vary by sociality. Our findings are consistent with a role of JH in modulating social behaviour and suggest that eusocial evolution was facilitated by alteration of the proteins that bind and transport JH, revealing how an ancestral developmental hormone may have been co-opted during one of life's major transitions. More broadly, our results highlight how evolutionary trade-offs have structured the molecular basis of eusociality in these bees and demonstrate how both directional selection and release from constraint can shape trait evolution.


Assuntos
Comportamento Social , Suor , Abelhas , Animais , Reprodução , Fenótipo
4.
Mol Ecol ; 32(5): 1087-1097, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36541826

RESUMO

Indirect genetic effects describe phenotypic variation that results from differences in the genotypic composition of social partners. Such effects represent heritable sources of environmental variation in eusocial organisms because individuals are typically reared by their siblings. In the fire ant Solenopsis invicta, a social supergene exhibits striking indirect genetic effects on worker regulation of colony queen number, such that the genotypic composition of workers at the supergene determines whether colonies contain a single or multiple queens. We assessed the direct and indirect genetic effects of this supergene on gene expression in brains and abdominal tissues from laboratory-reared workers and compared these with previously published data from field-collected prereproductive queens. We found that direct genetic effects caused larger gene expression changes and were more consistent across tissue types and castes than indirect genetic effects. Indirect genetic effects influenced the expression of many loci but were generally restricted to the abdominal tissues. Further, indirect genetic effects were only detected when the genotypic composition of social partners differed throughout the development and adult life of focal workers, and were often only significant with relatively lenient statistical cutoffs. Our study provides insight into direct and indirect genetic effects of a social supergene on gene regulatory dynamics across tissues and castes in a complex society.


Assuntos
Formigas , Comportamento Social , Humanos , Animais , Genótipo , Regulação da Expressão Gênica , Formigas/genética
6.
Viruses ; 13(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34372510

RESUMO

Planting resistant cultivars is the most effective tactic to manage the thrips-transmitted tomato spotted wilt orthotospovirus (TSWV) in peanut plants. However, molecular mechanisms conferring resistance to TSWV in resistant cultivars are unknown. In this study, transcriptomes of TSWV-susceptible (SunOleic 97R) and field-resistant (Tifguard) peanut cultivars with and without TSWV infection were assembled and differentially expressed genes (DEGs) were compared. There were 4605 and 2579 significant DEGs in SunOleic 97R and Tifguard, respectively. Despite the lower number of DEGs in Tifguard, an increased proportion of defense-related genes were upregulated in Tifguard than in the susceptible cultivar. Examples included disease resistance (R) proteins, leucine-rich repeats, stilbene synthase, dicer, and calmodulin. Pathway analysis revealed the increased downregulation of genes associated with defense and photosynthesis in the susceptible cultivar rather than in the resistant cultivar. These results suggest that essential physiological functions were less perturbed in the resistant cultivar than in the susceptible cultivar and that the defense response following TSWV infection was more robust in the resistant cultivar than in the susceptible cultivar.


Assuntos
Arachis/genética , Arachis/virologia , Resistência à Doença/genética , Expressão Gênica , Doenças das Plantas/virologia , Tospovirus/patogenicidade , Perfilação da Expressão Gênica , Solanum lycopersicum/virologia , Tospovirus/genética
7.
Mol Ecol ; 29(19): 3622-3636, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32749006

RESUMO

The fire ant Solenopsis invicta exists in two alternate social forms: monogyne nests contain a single reproductive queen and polygyne nests contain multiple reproductive queens. This colony-level social polymorphism corresponds with individual differences in queen physiology, queen dispersal patterns and worker discrimination behaviours, all evidently regulated by an inversion-based supergene that spans more than 13 Mb of a "social chromosome," contains over 400 protein-coding genes and rarely undergoes recombination. The specific mechanisms by which this supergene influences expression of the many distinctive features that characterize the alternate forms remain almost wholly unknown. To advance our understanding of these mechanisms, we explore the effects of social chromosome genotype and natal colony social form on gene expression in queens sampled as they embarked on nuptial flights, using RNA-sequencing of brains and ovaries. We observe a large effect of natal social form, that is, of the social/developmental environment, on gene expression profiles, with similarly substantial effects of genotype, including: (a) supergene-associated gene upregulation, (b) allele-specific expression and (c) pronounced extra-supergene trans-regulatory effects. These findings, along with observed spatial variation in differential and allele-specific expression within the supergene region, highlight the complex gene regulatory landscape that emerged following divergence of the inversion-mediated Sb haplotype from its homologue, which presumably largely retained the ancestral gene order. The distinctive supergene-associated gene expression trajectories we document at the onset of a queen's reproductive life expand the known record of relevant molecular correlates of a complex social polymorphism and point to putative genetic factors underpinning the alternate social syndromes.


Assuntos
Formigas , Alelos , Animais , Formigas/genética , Herança Multifatorial , Polimorfismo Genético , Comportamento Social
8.
Curr Biol ; 30(2): R73-R76, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31962080

RESUMO

Supergenes are multiple linked genes that regulate complex, polymorphic traits, but little is known about their evolution. A new study of an ancient supergene in several ant species suggests that rare recombination events shape supergene evolution in surprising ways.


Assuntos
Formigas , Animais , Fenótipo , Recombinação Genética
9.
Nat Ecol Evol ; 4(2): 240-249, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31959939

RESUMO

Supergenes are clusters of linked genetic loci that jointly affect the expression of complex phenotypes, such as social organization. Little is known about the origin and evolution of these intriguing genomic elements. Here we analyse whole-genome sequences of males from native populations of six fire ant species and show that variation in social organization is under the control of a novel supergene haplotype (termed Sb), which evolved by sequential incorporation of three inversions spanning half of a 'social chromosome'. Two of the inversions interrupt protein-coding genes, resulting in the increased expression of one gene and modest truncation in the primary protein structure of another. All six socially polymorphic species studied harbour the same three inversions, with the single origin of the supergene in their common ancestor inferred by phylogenomic analyses to have occurred half a million years ago. The persistence of Sb along with the ancestral SB haplotype through multiple speciation events provides a striking example of a functionally important trans-species social polymorphism presumably maintained by balancing selection. We found that while recombination between the Sb and SB haplotypes is severely restricted in all species, a low level of gene flux between the haplotypes has occurred following the appearance of the inversions, potentially mitigating the evolutionary degeneration expected at genomic regions that cannot freely recombine. These results provide a detailed picture of the structural genomic innovations involved in the formation of a supergene controlling a complex social phenotype.


Assuntos
Formigas , Animais , Inversão Cromossômica , Masculino , Fenótipo , Filogenia , Polimorfismo Genético
10.
Curr Opin Insect Sci ; 34: 27-32, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31247414

RESUMO

The study of the major transition to eusociality presents several challenges to researchers, largely resulting from the importance of complex behavioral phenotypes and the shift from individual to group level selection. These challenges are being met with corresponding technological improvements. Advances in resource development for non-model taxa, behavioral tracking, nucleic acid sequencing, and reverse genetics are facilitating studies of hypotheses that were previously intractable. These innovations are resulting in the development of new model systems tailored to the exploration of specific behavioral phenotypes and the querying of underlying molecular mechanisms that drive eusocial behaviors. Here, we present a brief overview of how methodological innovations are advancing our understanding of the evolution of eusociality.


Assuntos
Evolução Biológica , Himenópteros , Comportamento Social , Animais , Genética Reversa , Tecnologia , Sequenciamento Completo do Genoma
11.
Philos Trans R Soc Lond B Biol Sci ; 374(1777): 20180247, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31154980

RESUMO

The evolutionary origins of eusociality represent increases in complexity from individual to caste-based, group reproduction. These behavioural transitions have been hypothesized to go hand in hand with an increased ability to regulate when and where genes are expressed. Bees have convergently evolved eusociality up to five times, providing a framework to test this hypothesis. To examine potential links between putative gene regulatory elements and social evolution, we compare alignable, non-coding sequences in 11 diverse bee species, encompassing three independent origins of reproductive division of labour and two elaborations of eusocial complexity. We find that rates of evolution in a number of non-coding sequences correlate with key social transitions in bees. Interestingly, while we find little evidence for convergent rate changes associated with independent origins of social behaviour, a number of molecular pathways exhibit convergent rate changes in conjunction with subsequent elaborations of social organization. We also present evidence that many novel non-coding regions may have been recruited alongside the origin of sociality in corbiculate bees; these loci could represent gene regulatory elements associated with division of labour within this group. Thus, our findings are consistent with the hypothesis that gene regulatory innovations are associated with the evolution of eusociality and illustrate how a thorough examination of both coding and non-coding sequence can provide a more complete understanding of the molecular mechanisms underlying behavioural evolution. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.


Assuntos
Abelhas/genética , Evolução Molecular , Regiões não Traduzidas , Animais , Abelhas/classificação , Abelhas/fisiologia , Comportamento Animal , DNA/genética , Feminino , Masculino , Filogenia , Reprodução , Comportamento Social
12.
Annu Rev Entomol ; 64: 185-203, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30285490

RESUMO

Epigenetic inheritance is fundamentally important to cellular differentiation and developmental plasticity. In this review, we provide an introduction to the field of molecular epigenetics in insects. Epigenetic information is passed across cell divisions through the methylation of DNA, the modification of histone proteins, and the activity of noncoding RNAs. Much of our knowledge of insect epigenetics has been gleaned from a few model species. However, more studies of epigenetic information in traditionally nonmodel taxa will help advance our understanding of the developmental and evolutionary significance of epigenetic inheritance in insects. To this end, we also provide a brief overview of techniques for profiling and perturbing individual facets of the epigenome. Doing so in diverse cellular, developmental, and taxonomic contexts will collectively help shed new light on how genome regulation results in the generation of diversity in insect form and function.


Assuntos
Metilação de DNA , Epigênese Genética , Código das Histonas , Insetos/genética , RNA não Traduzido/fisiologia , Animais , Fenótipo
13.
Genome Biol Evol ; 10(10): 2749-2758, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30247544

RESUMO

Despite a strong history of theoretical work on the mechanisms of social evolution, relatively little is known of the molecular genetic changes that accompany transitions from solitary to eusocial forms. Here, we provide the first genome of an incipiently social bee that shows both solitary and social colony organization in sympatry, the Australian carpenter bee Ceratina australensis. Through comparative analysis, we provide support for the role of conserved genes and cis-regulation of gene expression in the phenotypic plasticity observed in nest-sharing, a rudimentary form of sociality. Additionally, we find that these conserved genes are associated with caste differences in advanced eusocial species, suggesting these types of mechanisms could pave the molecular pathway from solitary to eusocial living. Genes associated with social nesting in this species show signatures of being deeply conserved, in contrast to previous studies in other bees showing novel and faster-evolving genes are associated with derived sociality. Our data provide support for the idea that the earliest social transitions are driven by changes in gene regulation of deeply conserved genes.


Assuntos
Abelhas/genética , Evolução Biológica , Comportamento Social , Adaptação Biológica , Animais , Sequência de Bases , Abelhas/metabolismo , Encéfalo/metabolismo , Sequência Conservada , Feminino , Expressão Gênica , Genoma de Inseto , Fatores de Transcrição/genética
14.
Nat Commun ; 9(1): 3468, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-30150650

RESUMO

Developmental plasticity describes the influence of environmental factors on phenotypic variation. An important mediator of developmental plasticity in many animals is parental care. Here, we examine the consequences of maternal care on offspring after the initial mass provisioning of brood in the small carpenter bee, Ceratina calcarata. Removal of the mother during larval development leads to increased aggression and avoidance in adulthood. This corresponds with changes in expression of over one thousand genes, alternative splicing of hundreds of genes, and significant changes to DNA methylation. We identify genes related to metabolic and neuronal functions that may influence developmental plasticity and aggression. We observe no genome-wide association between differential DNA methylation and differential gene expression or splicing, though indirect relationships may exist between these factors. Our results provide insight into the gene regulatory context of DNA methylation in insects and the molecular avenues through which variation in maternal care influences developmental plasticity.


Assuntos
Abelhas/genética , Metilação de DNA/genética , Processamento Alternativo/genética , Animais , Feminino , Expressão Gênica/genética
15.
Insect Sci ; 25(1): 57-65, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27774769

RESUMO

DNA methylation is accomplished in animals by 2 classes of enzymes known as DNA methyltransferases, DNMT3 and DNMT1, which perform de novo methylation and maintenance methylation, respectively. Several studies of hymenopteran eusocial insects suggest that DNA methylation is capable of influencing developmental plasticity. However, fundamental questions remain about the patterning of DNA methylation during the course of insect development. In this study, we performed quantitative real-time PCR (qPCR) on transcripts from the single-copy orthologs of DNMT1 and DNMT3 in the red imported fire ant, Solenopsis invicta. In particular, we assessed the expression of S. invicta Dnmt1 and Dnmt3 mRNA during 7 stages of worker development, among behaviorally distinct adults, and among male and female gonads. Dnmt3 was most highly expressed during embryonic development, whereas Dnmt1 was similarly expressed throughout the course of development. Moreover, Dnmt1 and Dnmt3 were highly expressed in testes and ovaries. Neither Dnmt was significantly differentially expressed among heads of behaviorally distinct adult castes. Our results support the hypothesis that extensive patterning of DNA methylation occurs during gametogenesis and embryogenesis in the insect order Hymenoptera.


Assuntos
Formigas/enzimologia , Formigas/crescimento & desenvolvimento , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Animais , Feminino , Proteínas de Insetos/metabolismo , Masculino
16.
Genome Biol Evol ; 9(6): 1687-1698, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28854636

RESUMO

Changes in gene regulation that underlie phenotypic evolution can be encoded directly in the DNA sequence or mediated by chromatin modifications such as DNA methylation. It has been hypothesized that the evolution of eusocial division of labor is associated with enhanced gene regulatory potential, which may include expansions in DNA methylation in the genomes of Hymenoptera (bees, ants, wasps, and sawflies). Recently, this hypothesis garnered support from analyses of a commonly used metric to estimate DNA methylation in silico, CpG content. Here, we test this hypothesis using direct, nucleotide-level measures of DNA methylation across nine species of Hymenoptera. In doing so, we generated new DNA methylomes for three species of interest, including one solitary and one facultatively eusocial halictid bee and a sawfly. We demonstrate that the strength of correlation between CpG content and DNA methylation varies widely among hymenopteran taxa, highlighting shortcomings in the utility of CpG content as a proxy for DNA methylation in comparative studies of taxa with sparse DNA methylomes. We observed strikingly high levels of DNA methylation in the sawfly relative to other investigated hymenopterans. Analyses of molecular evolution suggest the relatively distinct sawfly DNA methylome may be associated with positive selection on functional DNMT3 domains. Sawflies are an outgroup to all ants, bees, and wasps, and no sawfly species are eusocial. We find no evidence that either global expansions or variation within individual ortholog groups in DNA methylation are consistently associated with the evolution of social behavior.


Assuntos
Metilação de DNA , Himenópteros/fisiologia , Animais , Composição de Bases , Comportamento Animal , Evolução Molecular , Himenópteros/classificação , Himenópteros/genética , Filogenia , Análise de Sequência de DNA , Comportamento Social
17.
Genome Biol Evol ; 8(5): 1401-10, 2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27048475

RESUMO

Understanding the evolution of animal societies, considered to be a major transition in evolution, is a key topic in evolutionary biology. Recently, new gateways for understanding social evolution have opened up due to advances in genomics, allowing for unprecedented opportunities in studying social behavior on a molecular level. In particular, highly eusocial insect species (caste-containing societies with nonreproductives that care for siblings) have taken center stage in studies of the molecular evolution of sociality. Despite advances in genomic studies of both solitary and eusocial insects, we still lack genomic resources for early insect societies. To study the genetic basis of social traits requires comparison of genomes from a diversity of organisms ranging from solitary to complex social forms. Here we present the genome of a subsocial bee, Ceratina calcarata This study begins to address the types of genomic changes associated with the earliest origins of simple sociality using the small carpenter bee. Genes associated with lipid transport and DNA recombination have undergone positive selection in C. calcarata relative to other bee lineages. Furthermore, we provide the first methylome of a noneusocial bee. Ceratina calcarata contains the complete enzymatic toolkit for DNA methylation. As in the honey bee and many other holometabolous insects, DNA methylation is targeted to exons. The addition of this genome allows for new lines of research into the genetic and epigenetic precursors to complex social behaviors.


Assuntos
Comportamento Animal , Evolução Biológica , Metilação de DNA , Genes de Insetos , Genoma de Inseto , Genômica/métodos , Animais , Abelhas , Evolução Molecular , Filogenia , Análise de Sequência de DNA
18.
G3 (Bethesda) ; 6(2): 357-63, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26637432

RESUMO

Epigenetic information is widely appreciated for its role in gene regulation in eukaryotic organisms. However, epigenetic information can also influence genome evolution. Here, we investigate the effects of epigenetic information on gene sequence evolution in two disparate insects: the fly Drosophila melanogaster, which lacks substantial DNA methylation, and the ant Camponotus floridanus, which possesses a functional DNA methylation system. We found that DNA methylation was positively correlated with the synonymous substitution rate in C. floridanus, suggesting a key effect of DNA methylation on patterns of gene evolution. However, our data suggest the link between DNA methylation and elevated rates of synonymous substitution was explained, in large part, by the targeting of DNA methylation to genes with signatures of transcriptionally active chromatin, rather than the mutational effect of DNA methylation itself. This phenomenon may be explained by an elevated mutation rate for genes residing in transcriptionally active chromatin, or by increased structural constraints on genes in inactive chromatin. This result highlights the importance of chromatin structure as the primary epigenetic driver of genome evolution in insects. Overall, our study demonstrates how different epigenetic systems contribute to variation in the rates of coding sequence evolution.


Assuntos
Cromatina/genética , Metilação de DNA , Epigênese Genética , Evolução Molecular , Insetos/genética , Animais , Cromatina/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Perfilação da Expressão Gênica , Genoma de Inseto , Genômica/métodos , Histonas/metabolismo , Insetos/metabolismo , Fases de Leitura Aberta
19.
Science ; 348(6239): 1139-43, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25977371

RESUMO

The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks.


Assuntos
Abelhas/genética , Evolução Molecular , Deriva Genética , Comportamento Social , Transcriptoma , Aminoácido N-Acetiltransferase , Animais , Abelhas/classificação , Elementos de DNA Transponíveis , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genoma de Inseto/genética , Filogenia , Seleção Genética , Fatores de Transcrição/química , Fatores de Transcrição/genética
20.
Genome Biol Evol ; 7(4): 931-42, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25724207

RESUMO

Epigenetic information regulates gene function and has important effects on development in eukaryotic organisms. DNA methylation, one such form of epigenetic information, has been implicated in the regulation of gene function in diverse metazoan taxa. In insects, DNA methylation has been shown to play a role in the regulation of gene expression and splicing. However, the functional basis for this role remains relatively poorly understood, and other epigenetic systems likely interact with DNA methylation to affect gene expression. We investigated associations between DNA methylation and histone modifications in the genome of the ant Camponotus floridanus in order to provide insight into how different epigenetic systems interact to affect gene function. We found that many histone modifications are strongly predictive of DNA methylation levels in genes, and that these epigenetic signals are more predictive of gene expression when considered together than when considered independently. We also found that peaks of DNA methylation are associated with the spatial organization of chromatin within active genes. Finally, we compared patterns of differential histone modification enrichment to patterns of differential DNA methylation to reveal that several histone modifications significantly covary with DNA methylation between C. floridanus phenotypes. As the first genomic comparison of DNA methylation to histone modifications within a single insect taxon, our investigation provides new insight into the regulatory significance of DNA methylation.


Assuntos
Formigas/genética , Cromatina/metabolismo , Metilação de DNA , Histonas/metabolismo , Animais , Formigas/metabolismo , Cromatina/química , Expressão Gênica , Genoma de Inseto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA