Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Behav Evol ; 99(2): 96-108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38447544

RESUMO

BACKGROUND: By examining species-specific innate behaviours, neuroethologists have characterized unique neural strategies and specializations from throughout the animal kingdom. Simultaneously, the field of evolutionary developmental biology (informally, "evo-devo") seeks to make inferences about animals' evolutionary histories through careful comparison of developmental processes between species, because evolution is the evolution of development. Yet despite the shared focus on cross-species comparisons, there is surprisingly little crosstalk between these two fields. Insights can be gleaned at the intersection of neuroethology and evo-devo. Every animal develops within an environment, wherein ecological pressures advantage some behaviours and disadvantage others. These pressures are reflected in the neurodevelopmental strategies employed by different animals across taxa. SUMMARY: Vision is a system of particular interest for studying the adaptation of animals to their environments. The visual system enables a wide variety of animals across the vertebrate lineage to interact with their environments, presenting a fantastic opportunity to examine how ecological pressures have shaped animals' behaviours and developmental strategies. Applying a neuroethological lens to the study of visual development, we advance a novel theory that accounts for the evolution of spontaneous retinal waves, an important phenomenon in the development of the visual system, across the vertebrate lineage. KEY MESSAGES: We synthesize literature on spontaneous retinal waves from across the vertebrate lineage. We find that ethological considerations explain some cross-species differences in the dynamics of retinal waves. In zebrafish, retinal waves may be more important for the development of the retina itself, rather than the retinofugal projections. We additionally suggest empirical tests to determine whether Xenopus laevis experiences retinal waves.


Assuntos
Evolução Biológica , Vertebrados , Visão Ocular , Animais , Vertebrados/fisiologia , Visão Ocular/fisiologia , Retina/fisiologia , Retina/crescimento & desenvolvimento , Etologia
3.
Front Behav Neurosci ; 14: 71, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477078

RESUMO

Many animals, especially those that develop externally, are equipped with innate color preferences that promote survival. For example, Xenopus tadpoles are known to phototax most robustly towards mid-spectrum ("green") wavelengths of light while avoiding shorter ("blue") wavelengths. The innate preference to phototax towards green likely promotes survival by guiding the tadpoles to green aquatic plants-their source of both food and safety. Here, we characterize the dynamics and circuitry that give rise to this intriguing hard-wired behavior. Using a novel open-field experimental paradigm we found that free-swimming tadpoles indeed spend most of their time in the green portion of the test dish, whether green is pitted against white (brighter than green) or black (darker than green). This preference was modest yet incredibly persistent over time, which, according to the shell game model of predator-prey interactions, minimizes being found by the predator. Furthermore, we found that this innate preference for the color green was experience-independent, and manifested mainly via profoundly slower swimming speeds while in the green region of the test dish. Ablation experiments showed that, at the circuit level, the color-guided swimming behavior requires the tegmentum, but not the optic tectum (OT). Lastly, we determined that exposing tadpoles to the selective serotonin reuptake inhibitor (SSRI) trazodone switched the tadpoles' preference from color-based to luminance-based, implicating two distinct visual circuits in the tadpole, one that is associated with color-driven behaviors, another associated with luminance-driven behaviors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA