Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Med ; 21(1): 254, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443018

RESUMO

BACKGROUND: Schizophrenia and bipolar disorder (BD) are believed to share clinical symptoms, genetic risk, etiological factors, and pathogenic mechanisms. We previously reported that single nucleotide polymorphisms spanning chromosome 3p21.1 showed significant associations with both schizophrenia and BD, and a risk SNP rs2251219 was in linkage disequilibrium with a human specific Alu polymorphism rs71052682, which showed enhancer effects on transcriptional activities using luciferase reporter assays in U251 and U87MG cells. METHODS: CRISPR/Cas9-directed genome editing, real-time quantitative PCR, and public Hi-C data were utilized to investigate the correlation between the Alu polymorphism rs71052682 and NISCH. Primary neuronal culture, immunofluorescence staining, co-immunoprecipitation, lentiviral vector production, intracranial stereotaxic injection, behavioral assessment, and drug treatment were used to examine the physiological impacts of Nischarin (encoded by NISCH). RESULTS: Deleting the Alu sequence in U251 and U87MG cells reduced mRNA expression of NISCH, the gene locates 180 kb from rs71052682, and Hi-C data in brain tissues confirmed the extensive chromatin contacts. These data suggested that the genetic risk of schizophrenia and BD predicted elevated NISCH expression, which was also consistent with the observed higher NISCH mRNA levels in the brain tissues from psychiatric patients compared with controls. We then found that overexpression of NISCH resulted in a significantly decreased density of mushroom dendritic spines with a simultaneously increased density of thin dendritic spines in primary cultured neurons. Intriguingly, elevated expression of this gene in mice also led to impaired spatial working memory in the Y-maze. Given that Nischarin is the target of anti-hypertensive agents clonidine and tizanidine, which have shown therapeutic effects in patients with schizophrenia and patients with BD in preliminary clinical trials, we demonstrated that treatment with those antihypertensive drugs could reduce NISCH mRNA expression and rescue the impaired working memory in mice. CONCLUSIONS: We identify a psychiatric risk gene NISCH at 3p21.1 GWAS locus influencing dendritic spine morphogenesis and cognitive function, and Nischarin may have potentials for future therapeutic development.


Assuntos
Espinhas Dendríticas , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Animais , Estudo de Associação Genômica Ampla/métodos , Cognição , Polimorfismo de Nucleotídeo Único/genética , Morfogênese , RNA Mensageiro
2.
BMC Med ; 21(1): 256, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452335

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) have reported single-nucleotide polymorphisms (SNPs) in the VRK serine/threonine kinase 2 gene (VRK2) showing genome-wide significant associations with major depression, but the regulation effect of the risk SNPs on VRK2 as well as their roles in the illness are yet to be elucidated. METHODS: Based on the summary statistics of major depression GWAS, we conducted population genetic analyses, epigenome bioinformatics analyses, dual luciferase reporter assays, and expression quantitative trait loci (eQTL) analyses to identify the functional SNPs regulating VRK2; we also carried out behavioral assessments, dendritic spine morphological analyses, and phosphorylated 4D-label-free quantitative proteomics analyses in mice with Vrk2 repression. RESULTS: We identified a SNP rs2678907 located in the 5' upstream of VRK2 gene exhibiting large spatial overlap with enhancer regulatory marks in human neural cells and brain tissues. Using luciferase reporter gene assays and eQTL analyses, the depression risk allele of rs2678907 decreased enhancer activities and predicted lower VRK2 mRNA expression, which is consistent with the observations of reduced VRK2 level in the patients with major depression compared with controls. Notably, Vrk2-/- mice exhibited depressive-like behaviors compared to Vrk2+/+ mice and specifically repressing Vrk2 in the ventral hippocampus using adeno-associated virus (AAV) lead to consistent and even stronger depressive-like behaviors in mice. Compared with Vrk2+/+ mice, the density of mushroom and thin spines in the ventral hippocampus was significantly altered in Vrk2-/- mice, which is in line with the phosphoproteomic analyses showing dysregulated synapse-associated proteins and pathways in Vrk2-/- mice. CONCLUSIONS: Vrk2 deficiency mice showed behavioral abnormalities that mimic human depressive phenotypes, which may serve as a useful murine model for studying the pathophysiology of depression.


Assuntos
Estudo de Associação Genômica Ampla , Leucemia Mieloide Aguda , Humanos , Camundongos , Animais , Depressão/genética , Polimorfismo de Nucleotídeo Único , Proteínas Serina-Treonina Quinases/metabolismo
4.
BMC Med ; 20(1): 464, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36447210

RESUMO

BACKGROUND: Bipolar disorder (BD) is a highly heritable psychiatric illness exhibiting substantial correlation with intelligence. METHODS: To investigate the shared genetic signatures between BD and intelligence, we utilized the summary statistics from genome-wide association studies (GWAS) to conduct the bivariate causal mixture model (MiXeR) and conjunctional false discovery rate (conjFDR) analyses. Subsequent expression quantitative trait loci (eQTL) mapping in human brain and enrichment analyses were also performed. RESULTS: Analysis with MiXeR suggested that approximately 10.3K variants could influence intelligence, among which 7.6K variants were correlated with the risk of BD (Dice: 0.80), and 47% of these variants predicted BD risk and intelligence in consistent allelic directions. The conjFDR analysis identified 37 distinct genomic loci that were jointly associated with BD and intelligence with a conjFDR < 0.01, and 16 loci (43%) had the same directions of allelic effects in both phenotypes. Brain eQTL analyses found that genes affected by the "concordant loci" were distinct from those modulated by the "discordant loci". Enrichment analyses suggested that genes related to the "concordant loci" were significantly enriched in pathways/phenotypes related with synapses and sleep quality, whereas genes associated with the "discordant loci" were enriched in pathways related to cell adhesion, calcium ion binding, and abnormal emotional phenotypes. CONCLUSIONS: We confirmed the polygenic overlap with mixed directions of allelic effects between BD and intelligence and identified multiple genomic loci and risk genes. This study provides hints for the mesoscopic phenotypes of BD and relevant biological mechanisms, promoting the knowledge of the genetic and phenotypic heterogeneity of BD. The essential value of leveraging intelligence in BD investigations is also highlighted.


Assuntos
Transtorno Bipolar , Humanos , Transtorno Bipolar/genética , Estudo de Associação Genômica Ampla , Inteligência/genética , Encéfalo , Alelos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA