Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 52(7): 606-613, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38670799

RESUMO

Rifampicin (RFP) has demonstrated potent antibacterial effects in the treatment of pulmonary tuberculosis. However, the serious adverse effects on the liver intensively limit the clinical usage of the drug. Deacetylation greatly reduces the toxicity of RFP but also retains its curative activity. Here, we found that Krüppel-like factor 15 (KLF15) repressed the expression of the major RFP detoxification enzyme Cyp3a11 in mice via both direct and indirect mechanisms. Knockout of hepatocyte KLF15 induced the expression of Cyp3a11 and robustly attenuated the hepatotoxicity of RFP in mice. In contrast, overexpression of hepatic KLF15 exacerbated RFP-induced liver injury as well as mortality. More importantly, the suppression of hepatic KLF15 expression strikingly restored liver functions in mice even after being pretreated with overdosed RFP. Therefore, this study identified the KLF15-Cyp3a11 axis as a novel regulatory pathway that may play an essential role in the detoxification of RFP and associated liver injury. SIGNIFICANCE STATEMENT: Rifampicin has demonstrated antibacterial effects in the treatment of pulmonary tuberculosis. However, the serious adverse effects on the liver limit the clinical usage of the drug. Permanent depletion and transient inhibition of hepatic KLF15 expression significantly induced the expression of Cyp3a11 and robustly attenuated mouse hepatotoxicity induced by RFP. Overall, our studies show the KLF15-Cyp3a11 axis was identified as a novel regulatory pathway that may play an essential role in the detoxification of RFP and associated liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Citocromo P-450 CYP3A , Fatores de Transcrição Kruppel-Like , Fígado , Camundongos Endogâmicos C57BL , Camundongos Knockout , Rifampina , Animais , Rifampina/efeitos adversos , Rifampina/toxicidade , Rifampina/farmacologia , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Camundongos , Masculino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Antibióticos Antituberculose/efeitos adversos , Antibióticos Antituberculose/farmacologia , Antibióticos Antituberculose/toxicidade , Proteínas de Membrana
2.
J Hypertens ; 40(7): 1394-1405, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35703228

RESUMO

OBJECTIVE: Hypertension is associated with vascular injury, which contributes to end-organ damage. MicroRNAs regulating mRNAs have been shown to play a role in vascular injury in hypertensive mice. We aimed to identify differentially expressed microRNAs and their mRNA targets in small arteries of hypertensive patients with/without chronic kidney disease (CKD) to shed light on the pathophysiological molecular mechanisms of vascular remodeling. METHODS AND RESULTS: Normotensive individuals and hypertensive patients with/without CKD were recruited ( n  = 15-16 per group). Differentially expressed microRNAs and mRNAs were identified uniquely associated with hypertension (microRNAs: 10, mRNAs: 68) or CKD (microRNAs: 68, mRNAs: 395), and in both groups (microRNAs: 2, mRNAs: 32) with a P less than 0.05 and a fold change less than or greater than 1.3 in subcutaneous small arteries ( n  = 14-15). One of the top three differentially expressed microRNAs, miR-338-3p that was down-regulated in CKD, presented the best correlation between RNA sequencing and reverse transcription-quantitative PCR (RT-qPCR, R2  = 0.328, P  < 0.001). Profiling of human aortic vascular cells showed that miR-338-3p was mostly expressed in endothelial cells. Two of the selected top nine up-regulated miR-338-3p predicted targets, glutathione peroxidase 3 ( GPX3 ) and protein tyrosine phosphatase receptor type S ( PTPRS ), were validated with mimics by RT-qPCR in human aortic endothelial cells ( P  < 0.05) and by a luciferase assay in HEK293T cells ( P  < 0.05). CONCLUSION: A distinct transcriptomic profile was observed in gluteal subcutaneous small arteries of hypertensive patients with CKD. Down-regulated miR-338-3p could contribute to GPX3 and PTPRS up-regulation via the canonical microRNA targeting machinery in hypertensive patients with CKD.http://links.lww.com/HJH/C27.


Assuntos
Hipertensão , MicroRNAs , Insuficiência Renal Crônica , Lesões do Sistema Vascular , Animais , Aorta/metabolismo , Células Endoteliais/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Células HEK293 , Humanos , Hipertensão/complicações , Hipertensão/genética , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , RNA Mensageiro , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Transcriptoma
3.
J Thorac Oncol ; 17(2): 277-288, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34648945

RESUMO

INTRODUCTION: Mutations in BRAF occur in 2% to 4% of patients with lung adenocarcinoma. Combination dabrafenib and trametinib, or single-agent vemurafenib is approved only for patients with cancers driven by the V600E BRAF mutation. Targeted therapy is not currently available for patients harboring non-V600 BRAF mutations. METHODS: A lung adenocarcinoma patient-derived xenograft model (PHLC12) with wild-type and nonamplified EGFR was tested for response to EGFR tyrosine kinase inhibitors (TKIs). A cell line derived from this model (X12CL) was also used to evaluate drug sensitivity and to identify potential drivers by small interfering RNA knockdown. Kinase assays were used to test direct targeting of the candidate driver by the EGFR TKIs. Structural modeling including, molecular dynamics simulations, and binding assays were conducted to explore the mechanism of off-target inhibition by EGFR TKIs on the model 12 driver. RESULTS: Both patient-derived xenograft PHLC12 and the X12CL cell line were sensitive to multiple EGFR TKIs. The BRAFG469V mutation was found to be the only known oncogenic mutation in this model. Small interfering RNA knockdown of BRAF, but not the EGFR, killed X12CL, confirming BRAFG469V as the oncogenic driver. Kinase activity of the BRAF protein isolated from X12CL was inhibited by treatment with the EGFR TKIs gefitinib and osimertinib, and expression of BRAFG469V in non-EGFR-expressing NR6 cells promoted growth in low serum condition, which was also sensitive to EGFR TKIs. Structural modeling, molecular dynamic simulations, and in vitro binding assays support BRAFG469V being a direct target of the TKIs. CONCLUSIONS: Clinically approved EGFR TKIs can be repurposed to treat patients with non-small cell lung cancer harboring the BRAFG469V mutation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética
4.
Transl Lung Cancer Res ; 9(5): 2214-2232, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33209645

RESUMO

Lung cancer accounts for most cancer-related deaths worldwide and has an overall 5-year survival rate of ~15%. Cell lines have played important roles in the study of cancer biology and potential therapeutic targets, as well as pre-clinical testing of novel drugs. However, most experimental therapies that have cleared preclinical testing using established cell lines have failed phase III clinical trials. This suggests that such models may not adequately recapitulate patient tumor biology and clinical outcome predictions. Here, we discuss and compare different pre-clinical lung cancer models, including established cell lines, patient-derived cell lines, xenografts and organoids, summarize the methodology for generating these models, and review their relative advantages and limitations in different oncologic research applications. We further discuss additional gaps in patient-derived pre-clinical models to better recapitulate tumor biology and improve their clinical predictive power.

5.
Proc Natl Acad Sci U S A ; 117(22): 12101-12108, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32414921

RESUMO

Membrane anchoring of farnesylated KRAS is critical for activation of RAF kinases, yet our understanding of how these proteins interact on the membrane is limited to isolated domains. The RAS-binding domain (RBD) and cysteine-rich domain (CRD) of RAF engage KRAS and the plasma membrane, unleashing the kinase domain from autoinhibition. Due to experimental challenges, structural insight into this tripartite KRAS:RBD-CRD:membrane complex has relied on molecular dynamics simulations. Here, we report NMR studies of the KRAS:CRAF RBD-CRD complex. We found that the nucleotide-dependent KRAS-RBD interaction results in transient electrostatic interactions between KRAS and CRD, and we mapped the membrane interfaces of the CRD, RBD-CRD, and the KRAS:RBD-CRD complex. RBD-CRD exhibits dynamic interactions with the membrane through the canonical CRD lipid-binding site (CRD ß7-8), as well as an alternative interface comprising ß6 and the C terminus of CRD and ß2 of RBD. Upon complex formation with KRAS, two distinct states were observed by NMR: State A was stabilized by membrane association of CRD ß7-8 and KRAS α4-α5 while state B involved the C terminus of CRD, ß3-5 of RBD, and part of KRAS α5. Notably, α4-α5, which has been proposed to mediate KRAS dimerization, is accessible only in state B. A cancer-associated mutation on the state B membrane interface of CRAF RBD (E125K) stabilized state B and enhanced kinase activity and cellular MAPK signaling. These studies revealed a dynamic picture of the assembly of the KRAS-CRAF complex via multivalent and dynamic interactions between KRAS, CRAF RBD-CRD, and the membrane.


Assuntos
Membrana Celular/metabolismo , Cisteína/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sítios de Ligação , Cisteína/química , Humanos , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética
6.
Am J Hypertens ; 33(6): 505-513, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32115655

RESUMO

BACKGROUND: Hypertension (HTN) is associated with target organ damage such as cardiac, vascular, and kidney injury. Several studies have investigated circulating microRNAs (miRNAs) as biomarkers of cardiovascular disease, but few have examined them as biomarker of target organ damage in HTN. We aimed to identify circulating miRNAs that could serve as biomarkers of HTN-induced target organ damage using an unbiased approach. METHODS AND RESULTS: Fifteen normotensive subjects, 16 patients with HTN, 15 with HTN associated with other features of the metabolic syndrome (MetS), and 16 with HTN or chronic kidney disease (CKD) were studied. Circulating RNA extracted from platelet-poor plasma was used for small RNA sequencing. Differentially expressed (DE) genes were identified with a threshold of false discovery rate <0.1. DE miRNAs were identified uniquely associated with HTN, MetS, or CKD. However, only 2 downregulated DE miRNAs (let-7g-5p and miR-191-5p) could be validated by reverse transcription-quantitative PCR. Let-7g-5p was associated with large vessel stiffening, miR-191-5p with MetS, and both miRNAs with estimated glomerular filtration rate (eGFR) and neutrophil and lymphocyte fraction or number and neutrophil-to-lymphocyte ratio. Using the whole population, stepwise multiple linear regression generated a model showing that let-7g-5p, miR-191-5p, and urinary albumin/creatinine ratio predicted eGFR with an adjusted R2 of 0.46 (P = 8.5e-7). CONCLUSIONS: We identified decreased circulating let-7g-5p and miR-191-5p as independent biomarkers of CKD among patients with HTN, which could have pathophysiological and therapeutic implications.


Assuntos
MicroRNA Circulante/sangue , Hipertensão/sangue , MicroRNAs/sangue , Insuficiência Renal Crônica/sangue , Adulto , Idoso , Albuminúria/sangue , Albuminúria/diagnóstico , Albuminúria/etiologia , Albuminúria/fisiopatologia , Pressão Sanguínea , Estudos de Casos e Controles , Regulação para Baixo , Feminino , Taxa de Filtração Glomerular , Humanos , Hipertensão/complicações , Hipertensão/diagnóstico , Hipertensão/fisiopatologia , Rim/fisiopatologia , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/fisiopatologia
7.
Hypertension ; 73(5): 1007-1017, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30929512

RESUMO

Vascular injury is an early manifestation in hypertension and a cause of end-organ damage. MicroRNAs play an important role in cardiovascular disease, but their implication in vascular injury in hypertension remains unclear. This study revealed using an unbiased approach, microRNA and mRNA sequencing with molecular interaction analysis, a microRNA-transcription factor coregulatory network involved in vascular injury in mice made hypertensive by 14-day Ang II (angiotensin II) infusion. A candidate gene approach identified upregulated miR-431-5p encoded in the conserved 12qF1 (14q32 in humans) microRNA cluster, whose expression correlated with blood pressure, and which has been shown to be upregulated in human atherosclerosis, as a potential key regulator in Ang II-induced vascular injury. Gain- and loss-of-function in human vascular smooth muscle cells demonstrated that miR-431-5p regulates in part gene expression by targeting ETS homologous factor. In vivo miR-431-5p knockdown delayed Ang II-induced blood pressure elevation and reduced vascular injury in mice, which demonstrated its potential as a target for treatment of hypertension and vascular injury.


Assuntos
Regulação da Expressão Gênica , Hipertensão/genética , MicroRNAs/genética , RNA/genética , Lesões do Sistema Vascular/genética , Angiotensina II/toxicidade , Animais , Células Cultivadas , Modelos Animais de Doenças , Hipertensão/induzido quimicamente , Hipertensão/prevenção & controle , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/biossíntese , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Lesões do Sistema Vascular/induzido quimicamente , Lesões do Sistema Vascular/prevenção & controle
9.
Cardiovasc Res ; 113(14): 1753-1762, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29016715

RESUMO

AIMS: Matrix metalloproteinases (MMPs) have been implicated in the development of hypertension in animal models and humans. Mmp2 deletion did not change Ang II-induced blood pressure (BP) rise. However, whether Mmp2 knockout affects angiotensin (Ang) II-induced vascular injury has not been tested. We sought to determine whether Mmp2 knockout will prevent Ang II-induced vascular injury. METHODS AND RESULTS: A fourteen-day Ang II infusion (1000 ng/kg/min, SC) increased systolic BP, decreased vasodilatory responses to acetylcholine, induced mesenteric artery (MA) hypertrophic remodelling, and enhanced MA stiffness in wild-type (WT) mice. Ang II enhanced aortic media and perivascular reactive oxygen species generation, aortic vascular cell adhesion molecule-1 and monocyte chemotactic protein-1 expression, perivascular monocyte/macrophage and T cell infiltration, and the fraction of spleen activated CD4+CD69+ and CD8+CD69+ T cells, and Ly-6Chi monocytes. Study of intracellular signalling showed that Ang II increased phosphorylation of epidermal growth factor receptor and extracellular-signal-regulated kinase 1/2 in vascular smooth muscle cells isolated from WT mice. All these effects were reduced or prevented by Mmp2 knockout, except for systolic BP elevation. Ang II increased Mmp2 expression in immune cells infiltrating the aorta and perivascular fat. Bone marrow (BM) transplantation experiments revealed that in absence of MMP2 in immune cells, Ang II-induced BP elevation was decreased, and that when MMP2 was deficient in either immune or vascular cells, Ang II-induced endothelial dysfunction was blunted. CONCLUSIONS: Mmp2 knockout impaired Ang II-induced vascular injury but not BP elevation. BM transplantation revealed a role for immune cells in Ang II-induced BP elevation, and for both vascular and immune cell MMP2 in Ang II-induced endothelial dysfunction.


Assuntos
Angiotensina II/farmacologia , Hipertensão/genética , Metaloproteinase 2 da Matriz/genética , Lesões do Sistema Vascular/induzido quimicamente , Lesões do Sistema Vascular/genética , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Endotélio Vascular/metabolismo , Hipertensão/fisiopatologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Estresse Oxidativo/genética , Lesões do Sistema Vascular/metabolismo
10.
Circulation ; 135(22): 2155-2162, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28330983

RESUMO

BACKGROUND: Innate antigen-presenting cells and adaptive immune T cells have been implicated in the development of hypertension. However, the T-lymphocyte subsets involved in the pathophysiology of hypertension remain unclear. A small subset of innate-like T cells expressing the γδ T cell receptor (TCR) rather than the αß TCR could play a role in the initiation of the immune response in hypertension. We aimed to determine whether angiotensin (Ang) II caused kinetic changes in γδ T cells; deficiency in γδ T cells blunted Ang II-induced hypertension, vascular injury, and T-cell activation; and γδ T cells are associated with human hypertension. METHODS: Male C57BL/6 wild-type and Tcrδ-/- mice, which are devoid of γδ T cells, or wild-type mice injected IP with control isotype IgG or γδ T cell-depleting antibodies, were infused or not with Ang II for 3, 7, or 14 days. T-cell profiling was determined by flow cytometry, systolic blood pressure (SBP) by telemetry, and mesentery artery endothelial function by pressurized myography. TCR γ constant region gene expression levels and clinical data of a whole blood gene expression microarray study, including normotensive and hypertensive subjects, were used to demonstrate an association between γδ T cells and SBP. RESULTS: Seven- and 14-day Ang II infusion increased γδ T-cell numbers and activation in the spleen of wild-type mice (P<0.05). Fourteen days of Ang II infusion increased SBP (P<0.01) and decreased mesenteric artery endothelial function (P<0.01) in wild-type mice, both of which were abrogated in Tcrδ-/- mice (P<0.01). Anti-TCRγδ antibody-induced γδ T-cell depletion blunted Ang II-induced SBP rise and endothelial dysfunction (P<0.05), compared with isotype antibody-treated Ang II-infused mice. Ang II-induced T-cell activation in the spleen and perivascular adipose tissue was blunted in Tcrδ-/- mice (P<0.01). In humans, the association between SBP and γδ T cells was demonstrated by a multiple linear regression model integrating whole blood TCR γ constant region gene expression levels and age and sex (R2=0.12, P<1×10-6). CONCLUSIONS: γδ T cells mediate Ang II-induced SBP elevation, vascular injury, and T-cell activation in mice. γδ T cells might contribute to the development of hypertension in humans.


Assuntos
Angiotensina II/toxicidade , Hipertensão/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/deficiência , Linfócitos T/metabolismo , Lesões do Sistema Vascular/metabolismo , Animais , Humanos , Hipertensão/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T/efeitos dos fármacos , Lesões do Sistema Vascular/induzido quimicamente
11.
Hypertension ; 66(2): 347-55, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26101346

RESUMO

The mechanisms of blood pressure regulation by endothelin-1 produced by endothelial cells are complex and still unclear. Transgenic mice with endothelium-restricted human endothelin-1 (EDN1) overexpression presented vascular damage but no significant change in blood pressure, which could be because of adaptation to life-long exposure to elevated endothelin-1 levels. We now generated a tamoxifen-inducible endothelium-restricted EDN1 overexpressing transgenic mouse (ieET-1) using Cre/loxP technology. Sixteen days after tamoxifen treatment, ieET-1 mice presented ≥10-fold increase in plasma endothelin-1 (P<0.01) and ≥20 mm Hg elevation in systolic blood pressure (P<0.01), which could be reversed by atrasentan (P<0.05). Endothelin-1 overexpression did not cause vascular or kidney injury or changes in kidney perfusion or function. However, endothelin type A and B receptor expression was differentially regulated in the mesenteric arteries and the kidney. Our results demonstrate using this ieET-1 mouse model that 21 days of induction of endothelin-1 overexpression caused endothelin-1-dependent elevated blood pressure mediated by endothelin type A receptors.


Assuntos
Pressão Sanguínea/fisiologia , Endotelina-1/metabolismo , Endotélio Vascular/metabolismo , Receptor de Endotelina A/metabolismo , Regulação para Cima/fisiologia , Animais , Atrasentana , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Endotelina-1/genética , Humanos , Hipertensão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pirrolidinas/farmacologia , Receptor de Endotelina B , Receptores de Endotelina/metabolismo , Tamoxifeno/farmacologia , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA