Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 452: 139561, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38728897

RESUMO

The utilization of essential oils as natural antioxidants and preservatives is limited by high volatility, poor water solubility, and long-term instability. To address this, a novel ultrasonic-assisted method was used to prepare and stabilize a nanoemulsion of turmeric essential oil-in-water, incorporating bioactive components extracted from Spirulina platensis. Ultrasonic treatment enhanced the extraction efficacy and nanoemulsion stability. Algal biomass subjected to ultrasonic treatment (30 min at 80% amplitude) yielded a dry extract of 73.66 ± 3.05%, with the highest protein, phenolic, phycocyanin, and allophycocyanin content, as well as maximum emulsifying activity. The resulting nanoemulsion (5% oil, 0.3% extract, 10 min ultrasonic treatment) showed reduced particle size (173.31 ± 2.24 nm), zeta potential (-36.33 ± 1.10 mV), low polydispersity index, and enhanced antioxidant and antibacterial properties. Rheology analysis indicated shear-thinning behavior, while microscopy and spectroscopy confirmed structural changes induced by ultrasonic treatment and extract concentration. This initiative developed a novel ultrasonic-assisted algal-based nanoemulsion with antioxidant and antibacterial properties.

2.
Funct Plant Biol ; 512024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38310926

RESUMO

Agricultural soils contaminated with heavy metals (HMs) impose a threat to the environmental and to human health. Amendment with biochar could be an eco-friendly and cost-effective option to decrease HMs in contaminated soil. This paper reviews the application of biochar as a soil amendment to immobilise HMs in contaminated soil. We discuss the technologies of its preparation, their specific properties, and effect on the bioavailability of HMs. Biochar stabilises HMs in contaminated soil, enhance the overall quality of the contaminated soil, and significantly reduce HM uptake by plants, making it an option in soil remediation for HM contamination. Biochar enhances the physical (e.g. bulk density, soil structure, water holding capacity), chemical (e.g. cation exchange capacity, pH, nutrient availability, ion exchange, complexes), and biological properties (e.g. microbial abundance, enzymatic activities) of contaminated soil. Biochar also enhances soil fertility, improves plant growth, and reduces the plant availability of HMs. Various field studies have shown that biochar application reduces the bioavailability of HMs from contaminated soil while increasing crop yield. The review highlights the positive effects of biochar by reducing HM bioavailability in contaminated soils. Future work is recommended to ensure that biochars offer a safe and sustainable solution to remediate soils contaminated with HMs.


Assuntos
Carvão Vegetal , Metais Pesados , Poluentes do Solo , Humanos , Solo/química , Metais Pesados/análise , Agricultura , Plantas
3.
Heliyon ; 10(4): e26023, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390045

RESUMO

The augmented prevalence of Se (Se) pollution can be attributed to various human activities, such as mining, coal combustion, oil extraction and refining, and agricultural irrigation. Although Se is vital for animals, humans, and microorganisms, excessive concentrations of this element can give rise to potential hazards. Consequently, numerous approaches have been devised to mitigate Se pollution, encompassing physicochemical techniques and bioremediation. The recognition of Se volatilization as a potential strategy for mitigating Se pollution in contaminated environments is underscored in this review. This study delves into the volatilization mechanisms in various organisms, including plants, microalgae, and microorganisms. By assessing the efficacy of Se removal and identifying the rate-limiting steps associated with volatilization, this paper provides insightful recommendations for Se mitigation. Constructed wetlands are a cost-effective and environmentally friendly alternative in the treatment of Se volatilization. The fate, behavior, bioavailability, and toxicity of Se within complex environmental systems are comprehensively reviewed. This knowledge forms the basis for developing management plans that aimed at mitigating Se contamination in wetlands and protecting the associated ecosystems.

4.
Bioresour Technol ; 394: 130282, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163488

RESUMO

The design of novel electrode deflector structures (EDSs) introduced a promising strategy for enhancing raceway ponds performance, increasing carbon fixation, and improving microalgal biomass accumulation. The computational fluid dynamics, based flow field principles, proved that the potency of arc-shaped electrode deflector structures (A-EDS) and spiral electrode deflector structures (S-EDS) were optimal. These configurations yielded superior culture effects, notably reducing dead zones by 9.1% and 11.7%, while elevating biomass increments of 14.7% and 11.5% compared to the control, respectively. In comparison to scenarios without electrostatic field application, the A-EDS group demonstrated pronounced post-stimulation growth, exhibiting an additional biomass increase of 11.2%, coupled with a remarkable 23.6% surge in CO2 fixation rate and mixing time reduction by 14.7%. A-EDS and S-EDS, combined with strategic electric field integration, provided a theoretical basis for promoting microalgal biomass production and enhancing carbon fixation in a raceway pond environment to similar production practices.


Assuntos
Microalgas , Lagoas , Biomassa , Hidrodinâmica
5.
Bioresour Technol ; 394: 130209, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135224

RESUMO

Urban areas remarkably affect global public health due to their emissions of greenhouse gases and poor air quality. Although urban areas only cover 2% of the Earth's surface, they are responsible for 80% of greenhouse gas emissions. Dense buildings limit vegetation, leading to increased air pollution and disruption of the local and regional carbon cycle. The substitution of urban gray roofs with microalgal green roofs has the potential to improve the carbon cycle by sequestering CO2 from the atmosphere. Microalgae can fix 15-50 times more CO2 than other types of vegetation. Advanced microalgal-based green roof technology may significantly accelerate the reduction of atmospheric CO2 in a more effective way. Microalgal green roofs also enhance air quality, oxygen production, acoustic isolation, sunlight absorption, and biomass production. This endeavor yields the advantage of simultaneously generating protein, lipids, vitamins, and a spectrum of valuable bioactive compounds, including astaxanthin, carotenoids, polysaccharides, and phycocyanin, thus contributing to a green economy. The primary focus of the current work is on analyzing the ecological advantages and CO2 bio-fixation efficiency attained through microalgal cultivation on urban rooftops. This study also briefly examines the idea of green roofs, clarifies the ecological benefits associated with them, discusses the practice of growing microalgae on rooftops, identifies the difficulties involved, and the positive aspects of this novel strategy.


Assuntos
Gases de Efeito Estufa , Microalgas , Fotobiorreatores , Dióxido de Carbono/metabolismo , Microalgas/metabolismo , Microclima , Biomassa
6.
Bioresour Technol ; 394: 130241, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142911

RESUMO

Rotifer reproduction control in open microalgae cultivation systems poses a significant challenge for large-scale industries. Conventional methods, such as electric, meshing, and chemical techniques, are often expensive, ineffective, and may have adverse environmental-health impacts. This study investigated a promising control technique through light-induced phototaxis to concentrate rotifers in a specific spot, where they were electroshocked by local-limited exposure dose. The results showed that the rotifers had the most pronounced positive and negative phototropism with phototaxis rates of 66.7 % and -78.8 %, respectively, at blue-light irradiation of 30 µmol∙m-2∙s-1 and red-light irradiation of 22.5 µmol∙m-2∙s-1 for 20 min. The most effective electroshock configuration employed 1200 V/cm for 15 min with a 1-second cycle time and a 10 % duty cycle, resulting in a 75.0 % rotifer removal rate without impacting microalgae growth. The combination of the two light beams could effectively lead rotifers to designated areas where they were electrocuted successfully.


Assuntos
Microalgas , Lagoas , Fototaxia , Eletrochoque , Luz Azul , Biomassa
7.
Int J Biol Macromol ; 253(Pt 6): 127352, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37838120

RESUMO

Interacting with cell surface attachment factors or receptors is the first step for virus infection. Glycans cover a thick layer on eukaryotic cells and are potential targets of various viruses. Bombyx mori nuclear polyhedrosis viruses (BmNPV) is a baculovirus that causes huge economic loss to the sericulture industry but the mechanism of infection is unclear. Looking for potential host receptors for the virus is an important task. In this study, we investigated the role of glycosaminoglycan (GAG) modifications, including heparan sulfate (HS) and chondroitin sulfate (CS), during BmNPV infection. Enzymatic removal of cell surface HS and CS effectively inhibited BmNPV infection and replication. Exogenous HS and CS can directly bind to BmNPV virion in solution and act as neutralizers for viral infection. Furthermore, the expression of enzymes involved in GAG biosynthesis was upregulated in the BmNPV susceptible silkworm after virus administration, but down-regulated in the resistant strain after virus treatment, suggesting that BmNPV was able to utilize host cell machinery to promote the biosynthesis of GAGs. This study demonstrated HS and CS as important attachment factors that facilitate the viral entry process, and targeting HS and CS can be an effective means of inhibiting BmNPV infection.


Assuntos
Bombyx , Nucleopoliedrovírus , Animais , Nucleopoliedrovírus/metabolismo , Bombyx/metabolismo , Glicosaminoglicanos/metabolismo , Células Eucarióticas
8.
Inorg Chem ; 62(42): 17425-17432, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37812810

RESUMO

In this work, a highly sensitive ratiometric homogeneous electroanalysis (HEA) strategy of cadmium(II) (Cd2+) was proposed via a Cd2+-controlled redox reaction and Ru(bpy)32+ (Ru(II)) release from a smart metal-organic framework (MOF) nanomaterial. For achieving this purpose, Ru(II) was entrapped ingeniously into the pores of an MOF material (UiO-66-NH2) and subsequently gated by the double-strand hybrids of a Cd2+-aptamer (Apt) and its complementary sequences (CP) to form a novel smart nanomaterial (denoted as Ru@UiO-66-NH2); meanwhile, Fe(III) was selected as an additional probe present in electrolyte to facilitate the Ru(II) redox reaction: Fe(III) + Ru(II) → Fe(II) + Ru(III). Owing to the strong binding effect of the Cd2+ target to the specific Apt, the Apt-CP hybridization at Ru@UiO-66-NH2 would be destroyed in the presence of Cd2+, and the related Apt was further induced away from the smart nanomaterial, leading to the opening of the gate and release of Ru(II). Meanwhile, the released Ru(II) was quickly oxidized chemically by Fe(III) to Ru(III). On the basis of the generated Ru(III) and consumed Fe(III), the ratio of the reduction currents between Ru(III) and Fe(III) exhibits an enhancement and it is dependent on the level of Cd2+; thus, a novel HEA strategy of Cd2+ was then designed. Under the optimal conditions, the HEA sensor shows a wide linearity ranging from 10.0 pM to 500.0 nM, and the achieved detection limit of Cd2+ is 3.3 pM. The as-designed ratiometric HEA strategy not only offers a unique idea to realize a simple and sensitive assay for Cd2+ but also possesses significant potential as an effective tool to be introduced for other target analysis just via altering the specific Apt.

9.
Bioresour Technol ; 386: 129501, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37468013

RESUMO

In this research, the effects of filtered sunlight traveling through translucent-colored polyvinyl chloride (PVC) sheets on the photoconversion efficiency of Arthrospira platensis are investigated. Filtered sunlight improves the phycobilisome's capacity to completely absorb and transport it to intracellular photosystems. Findings indicated that filtered sunlight via orange-colored PVC sheet increased biomass dry weight by 21% (2.80 g/L), while under blue-colored PVC sheet decreased by 32% (1.49 g/L), when compared with translucent-colored (control) PVC sheet (2.19 g/L) after 120 h of culture. The meteorological conditions during the 1st week of cultivation reported higher light flux than the subsequent weeks. Furthermore, sunlight filtered through orange PVC sheet enhanced protein, allophycocyanin, phycocyanin, chlorophyll-a and carotenoids synthesis by 13%, 15%, 13%, 22%, and 27%, respectively. This practical and inexpensive solar radiation filtration system supports large-scale production of tailored bioactive compounds from microalgae with high growth rate.


Assuntos
Spirulina , Luz Solar , Cloreto de Polivinila , Lagoas , Spirulina/metabolismo , Biomassa
10.
Sci Total Environ ; 894: 165044, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37355125

RESUMO

This study focuses on microbial protein (MP) as a promising food-feed alternative source that may contribute to overcoming the increased food challenge. It analyzes the traditional and advanced MP technologies, their progress, sustainability, and environmental limitations. Traditional MP technologies are reliable for global food-feed supply chains but face higher production costs and negative environmental impacts. Advanced MP systems utilize sustainable sources like food waste, but limited availability and characteristics necessitate pretreatments. Power-to-protein technology looks promising due to its ability to capture CO2 and avoiding external organic carbon addition, although more research is still needed. Cultivating indigenous microorganisms in agricultural wastewater, such as biofloc technology, offer potential for nutrient recovery and reduced environmental impacts. Microalgal biomass is sustainable but faces challenges of low palatability, productivity, and high costs, while ongoing studies try to solve these challenges. This review concludes that the advanced MP technologies are environmentally friendly and promising, while further studies are necessary to enhance performance and commercial implementation.


Assuntos
Microalgas , Eliminação de Resíduos , Alimentos , Águas Residuárias , Meio Ambiente , Biomassa , Tecnologia , Microalgas/metabolismo
11.
Crit Rev Biotechnol ; : 1-16, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380353

RESUMO

Microalgae are the preferred species for producing astaxanthin because they pose a low toxicity risk than chemical synthesis. Astaxanthin has multiple health benefits and is being used in: medicines, nutraceuticals, cosmetics, and functional foods. Haematococcus pluvialis is a model microalga for astaxanthin biosynthesis; however, its natural astaxanthin content is low. Therefore, it is necessary to develop methods to improve the biosynthesis of astaxanthin to meet industrial demands, making its commercialization cost-effective. Several strategies related to cultivation conditions are employed to enhance the biosynthesis of astaxanthin in H. pluvialis. However, the mechanism of its regulation by transcription factors is unknown. For the first time, this study critically reviewed the studies on identifying transcription factors, progress in H. pluvialis genetic transformation, and use of phytohormones that increase the gene expression related to astaxanthin biosynthesis. In addition, we propose future approaches, including (i) Cloning and characterization of transcription factors, (ii) Transcriptional engineering through overexpression of positive regulators or downregulation/silencing of negative regulators, (iii) Gene editing for enrichment or deletion of transcription factors binding sites, (iv) Hormonal modulation of transcription factors. This review provides considerable knowledge about the molecular regulation of astaxanthin biosynthesis and the existing research gap. Besides, it provides the basis for transcription factors mediated metabolic engineering of astaxanthin biosynthesis in H. pluvialis.

12.
Front Bioeng Biotechnol ; 11: 1176352, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180036

RESUMO

A highly efficient strategy using Copper-Glycyl-L-Histidyl-L-Lysine (GHK-Cu) as a novel inducer was developed to enhance laccase production by Trametes versicolor. After medium optimization, laccase activity increased by 12.77-fold compared to that without GHK-Cu. The laccase production of 1113.8 U L-1 was obtained by scaling-up culture in 5-L stirring tank. The laccase production induced by CuSO4 was poorer than that of GHK-Cu at the same mole concentration. GHK-Cu could increase the permeability of cell membrane with less damage, and it facilitated the adsorption, accumulation, and utilization of copper by fungal cells, which was beneficial for laccase synthesis. GHK-Cu induced better expression of laccase related genes than that of CuSO4, resulting in higher laccase production. This study provided a useful method for induced production of laccase by applying GHK chelated metal ion as a non-toxic inducer, which reduced the safety risk of laccase broth and provided the potential application of crude laccase in food industry. In addition, GHK can be used as the carrier of different metal ions to enhance the production of other metalloenzymes.

13.
Bioresour Technol ; 373: 128710, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36754237

RESUMO

In this study, computational fluid dynamics were employed to examined clockwise and anticlockwise vortexes in the rising and down coming sections of novel nested-bottle photobioreactor. The radial velocity was increased by four times which significantly reduced dead zones compared to traditional PBR. The (NB-PBR) comprised of integrated bottles connected by curved tubes (d = 4 cm) that generated dominant vortices as the microalgae solution flows through each section (h = 10 cm). The (NB-PBR) was independent of the inner and outer sections which increased the mixing time and mass-transfer coefficient by 13.33 % and 42.9 %, respectively. Furthermore, the results indicated that the (NB-PBR) showed higher photosynthesis efficiency preventing self-shading and photo-inhibition, resulting in an increase in biomass yield and carbon dioxide fixation by 35 % and 35.9 %, respectively.


Assuntos
Microalgas , Spirulina , Fotobiorreatores , Fotossíntese , Biomassa
14.
Food Chem ; 406: 135005, 2023 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-36446282

RESUMO

An efficient strategy for phycobiliprotein extraction from Spirulina platensis dry biomass has been developed by using NaCl as an enhancer. Different sodium ion and chloride ion salts were screened, and NaCl was selected as the most appropriate solvent for phycobiliprotein extraction. The extraction parameters with NaCl were optimized using response surface methodology. Under optimal operating conditions, a phycobiliprotein extraction rate of 74.8 % and a phycocyanin extraction yield of 102.4 mg/g with a purity of 74.0 % were achieved. Adding NaCl resulted in smaller fragments and destroyed the cell integrity of S. platensis, facilitating phycobiliprotein exudation. The secondary structure and antioxidant activity of phycobiliproteins were not affected by NaCl extraction. The stability of the phycobiliproteins was improved by adding NaCl. This study provides a potential method for phycobiliprotein extraction with high efficiency and good quality using an inexpensive extraction enhancer.


Assuntos
Ficobiliproteínas , Spirulina , Cloreto de Sódio , Biomassa , Spirulina/química , Ficocianina/química
15.
Foods ; 12(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38231709

RESUMO

Immobilized enzymes are currently being rapidly developed and are widely used in juice clarification. Immobilized enzymes have many advantages, and they show great advantages in juice clarification. The commonly used methods for immobilizing enzymes include adsorption, entrapment, covalent bonding, and cross-linking. Different immobilization methods are adopted for different enzymes to accommodate their different characteristics. This article systematically reviews the methods of enzyme immobilization and the use of immobilized supports in juice clarification. In addition, the mechanisms and effects of clarification with immobilized pectinase, immobilized laccase, and immobilized xylanase in fruit juice are elaborated upon. Furthermore, suggestions and prospects are provided for future studies in this area.

16.
Bioengineering (Basel) ; 9(11)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36354546

RESUMO

Improving the efficiency of using energy and decreasing impacts on the environment will be an inevitable choice for future development. Based on this direction, three kinds of medium (modified anaerobic digestion wastewater, anaerobic digestion wastewater and a standard growth medium BG11) were used to culture microalgae towards achieving high-quality biodiesel products. The results showed that microalgae culturing with anaerobic digestate wastewater could increase lipid content (21.8%); however, the modified anaerobic digestion wastewater can boost the microalgal biomass production to 0.78 ± 0.01 g/L when compared with (0.35-0.54 g/L) the other two groups. Besides the first step lipid extraction, the elemental composition, thermogravimetric and pyrolysis products of the defatted microalgal residues were also analysed to delve into the utilisation potential of microalgae biomass. Defatted microalgae from modified wastewater by pyrolysis at 650 °C resulted in an increase in the total content of valuable products (39.47%) with no significant difference in the content of toxic compounds compared to other groups. Moreover, the results of the life cycle assessment showed that the environmental impact (388.9 mPET2000) was lower than that of raw wastewater (418.1 mPET2000) and standard medium (497.3 mPET2000)-cultivated groups. Consequently, the method of culturing microalgae in modified wastewater and pyrolyzing algal residues has a potential to increase renewable energy production and reduce environmental impact.

17.
J Proteome Res ; 21(9): 2114-2123, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35959672

RESUMO

Parkinson's disease (PD) is a chronic and progressive movement disorder that is characterized by the loss of dopaminergic neurons in the brain. Animal models of PD have become very popular in the past two decades to understand the etiology, pathology, and molecular and cellular pathways associated with PD. In this study, we report the first neurotoxin-induced silkworm model for PD by chronic feeding with 6-hydroxydopamine (6-OHDA) and explore the possible molecular mechanisms associated with PD using proteomic and targeted metabolomic approaches. Although silkworm is phylogenetically distant from humans and rats, 6-OHDA treatment produced similar PD phenotypes, including motor dysfunction, dopaminergic neuron degeneration, and decreased levels of dopamine. Major neurotransmitters in the silkworm head tissue were profiled, revealing key molecules implicating neurodegenerative disorder. Proteomics analysis revealed a major downregulation of nearly 50 structural proteins constituting cuticles and microfilaments, indicating mechanical damage in the silkworm tissues. The results suggest that 6-OHDA treatment could induce PD-like symptoms in silkworms and activate similar proteomic and metabolic pathways to those in rats or higher animals. This study demonstrates the feasibility and value of the silkworm-based PD model, which may provide important clues for understanding the molecular and cellular mechanisms underlying PD. The mass spectrometry raw files have been deposited to iProx via the project ID IPX0004206000.


Assuntos
Bombyx , Doença de Parkinson , Animais , Bombyx/genética , Bombyx/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos , Humanos , Oxidopamina/farmacologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteômica , Ratos
18.
Bioengineering (Basel) ; 9(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35735500

RESUMO

This study is aimed at understanding the serious foaming problems during microalgal cultivation in industrial raceway ponds by studying the dynamic foam properties in Arthrospira platensis cultivation. A. platensis was cultivated in a 4 L bowl bioreactor for 4 days, during which the foam height above the algal solution increased from 0 to 30 mm with a bubble diameter of 1.8 mm, and biomass yield reached 1.5 g/L. The algal solution surface tension decreased from 55 to 45 mN/m, which favored the adsorption of microalgae on the bubble to generate more stable foams. This resulted in increased foam stability (FS) from 1 to 10 s, foam capacity (FC) from 0.3 to 1.2, foam expansion (FE) from 15 to 43, and foam maximum density (FMD) from 0.02 to 0.07. These results show a decrease in CO2 flow rate and operation temperature when using the Foamscan instrument, which minimized the foaming phenomenon in algal solutions to a significantly lower and acceptable level.

19.
Bioresour Technol ; 356: 127272, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35526707

RESUMO

Globally, the release of acrylonitrile-butadienestyrene (ABS) wastewater from numerous industries is a serious concern. Recently, oil-rich filamentous algae Tribonema sp has been grown utilizing toxic but nutrient-rich ABS effluent. Here, Tribonema sp. was cultivated under intervention of different magneto-electric combinatory fields (MCFs) (control, 0.6 V/cm, 1 h/d-1.2 V/cm, 1 h/d-0.6 V/cm, and 1 h/d-1.2 V/cm). Results showed MCF (1 h/d-0.6 V/cm) intervention increased the biomass by 9.7% (2.4 g/L) combined with high removal efficiencies (95% and 99%) of ammonium nitrogen and total phosphorus. The chemical oxygen demand (COD) removal rate increased to 82%, 6% higher than the control. Moreover, MCF of 1 h/d-0.6 V/cm significantly increased lipid and carbohydrate by 7.71% and 4.73% respectively. MCF increased premium fatty acid content such as palmitic acid (C16:0), myristic acid (C14: 0), and hexadecenoic acid (C16:1). MCF intervention also supported a diverse microbial flora, offering a favorable solution for ABS wastewater treatment.


Assuntos
Acrilonitrila , Microalgas , Estramenópilas , Purificação da Água , Biomassa , Butadienos , Eletricidade , Nitrogênio , Estireno , Águas Residuárias/química
20.
J Invertebr Pathol ; 190: 107736, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35259411

RESUMO

Elucidating the mechanism of infection of Bombyx mori nuclear polyhedrosis virus (BmNPV) and host antiviral response remains a major scientific task in sericulture. Virus invasion causes a series of antiviral immune responses in the host, and successful infection leads to massive changes in the host's physiological and biochemical state. Current research mainly focuses on silkworm genes and proteins associated with viral infection and resistance, but little is known regarding the host metabolic pathways that the virus utilizes for optimal replication. In this work, key metabolites involved in viral infection were identified, including trehalose, riboflavin, tryptophan, tyrosine, and phenylalanine. The genes associated with metabolite biosynthesis and catabolism were analyzed, and their expression levels were found to be largely consistent with their respective metabolite levels before and after viral treatment in both strains. The screened metabolites were further investigated for their roles in viral replication using exogenous metabolite addition into the culture medium. The results showed that tryptophan effectively inhibited BmNPV replication, while glutamine promoted viral replication in a dose-dependent manner. Trehalose and riboflavin exhibited a complex effect on BmNPV replication. This study outlines the critical metabolites and metabolic pathways required for BmNPV to proliferate and infect the host, indicting the potential of metabolite-based treatment for viral inhibition.


Assuntos
Bombyx , Nucleopoliedrovírus , Viroses , Animais , Antivirais/metabolismo , Proteínas de Insetos/metabolismo , Redes e Vias Metabólicas , Nucleopoliedrovírus/fisiologia , Riboflavina/metabolismo , Riboflavina/farmacologia , Trealose/metabolismo , Trealose/farmacologia , Triptofano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA