Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38015663

RESUMO

Accurate human motion estimation is crucial for effective and safe human-robot interaction when using robotic devices for rehabilitation or performance enhancement. Although surface electromyography (sEMG) signals have been widely used to estimate human movements, conventional sEMG-based methods, which need sEMG signals measured from multiple relevant muscles, are usually subject to some limitations, including interference between sEMG sensors and wearable robots/environment, complicated calibration, as well as discomfort during long-term routine use. Few methods have been proposed to deal with these limitations by using single-channel sEMG (i.e., reducing the sEMG sensors as much as possible). The main challenge for developing single-channel sEMG-based estimation methods is that high estimation accuracy is difficult to be guaranteed. To address this problem, we proposed an sEMG-driven state-space model combined with an sEMG decomposition algorithm to improve the accuracy of knee joint movement estimation based on single-channel sEMG signals measured from gastrocnemius. The effectiveness of the method was evaluated via both single- and multi-speed walking experiments with seven and four healthy subjects, respectively. The results showed that the normal root-mean-squared error of the estimated knee joint angle using the method could be limited to 15%. Moreover, this method is robust with respect to variations in walking speeds. The estimation performance of this method was basically comparable to that of state-of-the-art studies using multi-channel sEMG.


Assuntos
Articulação do Joelho , Músculo Esquelético , Humanos , Eletromiografia/métodos , Músculo Esquelético/fisiologia , Movimento/fisiologia , Algoritmos
2.
Materials (Basel) ; 16(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37629981

RESUMO

To overcome the shortcomings of traditional wet styrene-butadiene-styrene (SBS) modification technology, such as its high energy consumption and thermal decomposition, a warm mix and fast-melting SBS modifier was developed. Based on the theory of rheology, a dynamic shear rheometer (DSR) was applied to investigate the viscoelastic properties of the warm mix and fast-melting SBS-modified asphalt using a frequency scanning test. Atomic force microscopy (AFM) was used to reveal the modification mechanism of the SBS-modified asphalt. An investigation of the thermal stability of the asphalt binder was conducted using a thermogravimetric test (TG). The results exhibited that the SBS-modified asphalt had good viscoelastic properties, as well as thermal stability. The "bee structure" of the SBS-modified asphalt was finer and more stable. In addition, the adhesion and the Derjaguin-Muller-Toporov (DMT) modulus of the SBS-modified asphalt at a warm mixing speed was higher than that of regular SBS-modified asphalt.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37418413

RESUMO

Gait impairments are among the most common hallmarks of Parkinson's disease (PD), usually appearing in the early stage and becoming a major cause of disability with disease progression. Accurate assessment of gait features is critical to personalized rehabilitation for patients with PD, yet difficult to be routinely carried out as clinical diagnosis using rating scales relies heavily on clinical experience. Moreover, the popular rating scales cannot ensure fine quantification of gait impairments for patients with mild symptoms. Developing quantitative assessment methods that can be used in natural and home-based environments is highly demanded. In this study, we address the challenges by developing an automated video-based Parkinsonian gait assessment method using a novel skeleton-silhouette fusion convolution network. In addition, seven network-derived supplementary features, including critical aspects of gait impairment (gait velocity, arm swing, etc.), are extracted to provide continuous measures enhancing low-resolution clinical rating scales. Evaluation experiments were conducted on a dataset collected with 54 patients with early PD and 26 healthy controls. The results show that the proposed method accurately predicted the patients' unified Parkinson's disease rating scale (UPDRS) gait scores (71.25% match on clinical assessment) and discriminated between PD patients and healthy subjects with a sensitivity of 92.6%. Moreover, three proposed supplementary features (i.e., arm swing amplitude, gait velocity, and neck forward bending angle) turned out to be effective gait dysfunction indicators with Spearman correlation coefficients of 0.78, 0.73, and 0.43 matching the rating scores, respectively. Since the proposed system requires only two smartphones, it holds a significant benefit for home-based quantitative assessment of PD, especially for detecting early-stage PD. Furthermore, the proposed supplementary features can enable high-resolution assessments of PD for providing subject-specific accurate treatments.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico , Marcha , Esqueleto , Transtornos Neurológicos da Marcha/diagnóstico , Transtornos Neurológicos da Marcha/etiologia
4.
Front Neurorobot ; 16: 978014, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386394

RESUMO

Estimating human motion intention, such as intent joint torque and movement, plays a crucial role in assistive robotics for ensuring efficient and safe human-robot interaction. For coupled human-robot systems, surface electromyography (sEMG) signal has been proven as an effective means for estimating human's intended movements. Usually, joint movement estimation uses sEMG signals measured from multiple muscles and needs many sEMG sensors placed on the human body, which may cause discomfort or result in mechanical/signal interference from wearable robots/environment during long-term routine use. Although the muscle synergy principle implies that it is possible to estimate human motion using sEMG signals from even one signal muscle, few studies investigated the feasibility of continuous motion estimation based on single-channel sEMG. In this study, a feature-guided convolutional neural network (FG-CNN) has been proposed to estimate human knee joint movement using single-channel sEMG. In the proposed FG-CNN, several handcrafted features have been fused into a CNN model to guide CNN feature extraction, and both handcrafted and CNN-extracted features were applied to a regression model, i.e., random forest regression, to estimate knee joint movements. Experiments with 8 healthy subjects were carried out, and sEMG signals measured from 6 muscles, i.e., vastus lateralis, vastus medialis, biceps femoris, semitendinosus, lateral or medial gastrocnemius (LG or MG), were separately evaluated for knee joint estimation using the proposed method. The experimental results demonstrated that the proposed FG-CNN method with single-channel sEMG signals from LG or MG can effectively estimate human knee joint movements. The average correlation coefficient between the measured and the estimated knee joint movements is 0.858 ± 0.085 for LG and 0.856 ± 0.057 for MG. Meanwhile, comparative studies showed that the combined handcrafted-CNN features outperform either the handcrafted features or the CNN features; the performance of the proposed signal-channel sEMG-based FG-CNN method is comparable to those of the traditional multi-channel sEMG-based methods. The outcomes of this study enable the possibility of developing a single-channel sEMG-based human-robot interface for knee joint movement estimation, which can facilitate the routine use of assistive robots.

5.
Artigo em Inglês | MEDLINE | ID: mdl-34129501

RESUMO

Subjective clinical rating scales represent the gold-standard for diagnosis of motor function following stroke. In practice however, they suffer from well-recognized limitations including assessor variance, low inter-rater reliability and low resolution. Automated systems have been proposed for empirical quantification but have not significantly impacted clinical practice. We address translational challenges in this arena through: (1) implementation of a novel sensor suite combining inertial measurement and mechanomyography (MMG) to quantify hand and wrist motor function; and (2) introduction of a new range of signal features extracted from the suite to supplement predicted clinical scores. The wearable sensors, signal features, and machine learning algorithms have been combined to produce classified ratings from the Fugl-Meyer clinical assessment rating scale. Furthermore, we have designed the system to augment clinical rating with several sensor-derived supplementary features encompassing critical aspects of motor dysfunction (e.g. joint angle, muscle activity, etc.). Performance is validated through a large-scale study on a post-stroke cohort of 64 patients. Fugl-Meyer Assessment tasks were classified with 75% accuracy for gross motor tasks and 62% for hand/wrist motor tasks. Of greater import, supplementary features demonstrated concurrent validity with Fugl-Meyer ratings, evidencing their utility as new measures of motor function suited to automated assessment. Finally, the supplementary features also provide continuous measures of sub-components of motor function, offering the potential to complement low accuracy but well-validated clinical rating scales when high-quality motor outcome measures are required. We believe this work provides a basis for widespread clinical adoption of inertial-MMG sensor use for post-stroke clinical motor assessment.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Dispositivos Eletrônicos Vestíveis , Humanos , Reprodutibilidade dos Testes , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico , Extremidade Superior
6.
IEEE Trans Neural Syst Rehabil Eng ; 28(6): 1397-1406, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32305925

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease affecting millions worldwide. Bespoke subject-specific treatment (medication or deep brain stimulation (DBS)) is critical for management, yet depends on precise assessment cardinal PD symptoms - bradykinesia, rigidity and tremor. Clinician diagnosis is the basis of treatment, yet it allows only a cross-sectional assessment of symptoms which can vary on an hourly basis and is liable to inter- and intra-rater subjectivity across human examiners. Automated symptomatic assessment has attracted significant interest to optimise treatment regimens between clinician visits, however, no wearable has the capacity to simultaneously assess all three cardinal symptoms. Challenges in the measurement of rigidity, mapping muscle activity out-of-clinic and sensor fusion have inhibited translation. In this study, we address all through a novel wearable sensor system and machine learning algorithms. The sensor system is composed of a force-sensor, three inertial measurement units (IMUs) and four custom mechanomyography (MMG) sensors. The system was tested in its capacity to predict Unified Parkinson's Disease Rating Scale (UPDRS) scores based on quantitative assessment of bradykinesia, rigidity and tremor in PD patients. 23 PD patients were tested with the sensor system in parallel with exams conducted by treating clinicians and 10 healthy subjects were recruited as a comparison control group. Results prove the system accurately predicts UPDRS scores for all symptoms (85.4% match on average with physician assessment) and discriminates between healthy subjects and PD patients (96.6% on average). MMG features can also be used for remote monitoring of severity and fluctuations in PD symptoms out-of-clinic. This closed-loop feedback system enables individually tailored and regularly updated treatment, facilitating better outcomes for a very large patient population.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Estudos Transversais , Humanos , Hipocinesia/diagnóstico , Doença de Parkinson/diagnóstico , Tremor/diagnóstico
7.
IEEE Int Conf Rehabil Robot ; 2017: 435-440, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28813858

RESUMO

In this paper, an active impedance control strategy for a knee-joint orthosis is proposed to assist individuals suffering from lower-limb muscular weaknesses during the swing phase of walking activities. The goal of the proposed strategy is to decrease the human effort required for ensuring a successful knee joint movement during walking without sacrificing the wearer's control priority. In this study, a gait-phase based desired knee-joint admittance model is designed by analyzing the kinematic and kinetic characteristics of the wearer's shank-foot segment during walking. Moreover, the mechanical impedance of the human/orthosis system is adapted to the desired one using an active impedance compensation. The control approach was implemented using a knee joint orthosis and tested with four healthy subjects. The EMG signals of the short head of the biceps femoris and the vastus medialis are used as metrics to evaluate the effectiveness of the proposed strategy. The experimental results show that the human effort can be significantly decreased when the wearers are assisted using the proposed approach.


Assuntos
Impedância Elétrica , Articulação do Joelho/fisiologia , Debilidade Muscular/reabilitação , Aparelhos Ortopédicos , Caminhada/fisiologia , Adulto , Eletromiografia , Feminino , Marcha/fisiologia , Humanos , Masculino , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA