Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; : e2404272, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105445

RESUMO

Formamidinium lead iodide (FAPbI3) perovskite has lately surfaced as the preferred contender for highly proficient and robust perovskite solar cells (PSCs), owing to its favorable bandgap and superior thermal stability. Nevertheless, volatilization and migration of iodide ions (I-) result in non-radiating recombination centers, and the presence of large formamidine (FA) cations tends to cause lattice strain, thereby reducing the power conversion efficiency (PCE) and stability of PSCs. To solve these problems, the lead formate (PbFa) is added into the perovskite solution, which effectively mitigates the halogen vacancy and provides tensile strain outside the perovskite lattice, thereby enhancing its properties. The strong coordination between the C═O of HCOO- and Pb-I backbones effectively immobilizes anions, significantly increases the energy barrier for anion vacancy formation and migration, and reduces the risk of lead ion (Pb2+) leakage, thereby improving the operation and environmental safety of the device. Consequently, the champion PCE of devices with Ag electrodes can be increased from 22.15% to 24.32%. The unencapsulated PSCs can still maintain 90% of the original PCE even be stored in an N2 atmosphere for 1440 h. Moreover, the target devices have significantly improved performance in terms of light exposure, heat, or humidity.

2.
Small Methods ; 7(7): e2300192, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37116089

RESUMO

In order to improve the thermal stability of perovskite solar cells (PSCs) and reduce production costs, hole transport layer (HTL)-free carbon-based CsPbI3 PSCs (C-PSCs) have attracted the attention of researchers. However, the power conversion efficiency (PCE) of HTL-free CsPbI3 C-PSCs is still lower than that of PSCs with HTL/ metal electrodes. This is because the direct contact between the carbon electrode and the perovskite layer has a higher requirement on the crystal quality of perovskite layer and matched energy level at perovskite/carbon interface. Herein, the acyl chloride group and its derivative trichloroacetyl chloride are used to passivate CsPbI3 C-PSCs for the first time. The results show that the carbonyl group of trichloroacetyl chloride can effectively passivate the uncoordinated Pb2+ ions in perovskite. At the same time, leaving group Cl- ions can increase the grain size of perovskite and improve the crystallization quality of perovskite layer. In addition, the trichloroacetyl chloride tends to generate cesium chloride acetate, which acts as an electron blocking layer, reduces charge recombination, promotes gradient energy level arrangement, and effectively improves the separation and extraction ability of carriers. The PCE of CsPbI3 HTL-free C-PSCs is successfully increased from 13.40% to 14.82%.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36759344

RESUMO

Due to the advantages of low cost and good thermal stability, all-inorganic CsPbI2Br carbon-based perovskite solar cells (C-PSCs) without a hole transport layer have been rapidly developed in recent years. While the carbon electrode is in direct contact with the CsPbI2Br film, higher requirements are placed on the defects and energy level arrangement of the CsPbI2Br layer, which leads to the relatively low photoelectric conversion efficiency (PCE) of C-PSCs. Herein, propylamine hydrobromide (PABr) and its derivative 3-bromopropylamine hydrobromide (3Br-PABr) were used to passivate the surface defects of CsPbI2Br C-PSCs for the first time. The results show that passivation molecules are modulated by the substituent effect, leading to a stronger interaction between amino groups and uncoordinated Pb2+ ions, which facilitates a better passivation effect of 3Br-PABr. In addition, 3Br-PABr promotes the gradient arrangement of energy levels while passivating surface defects, which accelerates the rapid extraction of holes. After the passivation by PABr and 3Br-PABr, the PCE of HTL-free CsPbI2Br C-PSCs increased from 12.15% for the control device to 13.15 and 14.04%, respectively, which are among the highest reported values of CsPbI2Br C-PSCs.

4.
Carbohydr Polym ; 200: 602-610, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30177205

RESUMO

In order to reduce environmental pollution during microencapsulating phase change materials and expand their applications as well, a novel eco-friendly microencapsulated/nanoencapsulated phase change materials (Micro/NanoPCMs) and the corresponding encapsulation method were proposed and discussed in this study, where the natural chitosan and side-chain crystallizable comb-like polymer were selected as shell material and core material, respectively. During the encapsulating process via coacervation, the effects of different core-shell ratios on the morphology and thermal storage properties of microcapsules were discussed. FE-SEM and TEM was employed to investigate the morphology and microstructure of the microcapsules. The thermodynamics performance of microcapsules was studied using TGA and DSC. The encapsulation efficiency of microcapsules ranged from 49.82% to 68.99%, and the thermal stability temperature of microcapsules was measured to be 243.2 °C. The fabrication process where natural raw materials were employed and showing promising applications in such fields as medical treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA