RESUMO
ANITA's fourth long-duration balloon flight in 2016 detected 29 cosmic-ray (CR)-like events on a background of 0.37_{-0.17}^{+0.27} anthropogenic events. CRs are mainly seen in reflection off the Antarctic ice sheets, creating a phase-inverted waveform polarity. However, four of the below-horizon CR-like events show anomalous noninverted polarity, a p=5.3×10^{-4} chance if due to background. All anomalous events are from locations near the horizon; ANITA-IV observed no steeply upcoming anomalous events similar to the two such events seen in prior flights.
RESUMO
We report on an upward traveling, radio-detected cosmic-ray-like impulsive event with characteristics closely matching an extensive air shower. This event, observed in the third flight of the Antarctic Impulsive Transient Antenna (ANITA), a NASA-sponsored long-duration balloon payload, is consistent with a similar event reported in a previous flight. These events could be produced by the atmospheric decay of an upward-propagating τ lepton produced by a ν_{τ} interaction, although their relatively steep arrival angles create tension with the standard model neutrino cross section. Each of the two events have a posteriori background estimates of â²10^{-2} events. If these are generated by τ-lepton decay, then either the charged-current ν_{τ} cross section is suppressed at EeV energies, or the events arise at moments when the peak flux of a transient neutrino source was much larger than the typical expected cosmogenic background neutrinos.
RESUMO
We report on four radio-detected cosmic-ray (CR) or CR-like events observed with the Antarctic Impulsive Transient Antenna (ANITA), a NASA-sponsored long-duration balloon payload. Two of the four were previously identified as stratospheric CR air showers during the ANITA-I flight. A third stratospheric CR was detected during the ANITA-II flight. Here, we report on characteristics of these three unusual CR events, which develop nearly horizontally, 20-30 km above the surface of Earth. In addition, we report on a fourth steeply upward-pointing ANITA-I CR-like radio event which has characteristics consistent with a primary that emerged from the surface of the ice. This suggests a possible τ-lepton decay as the origin of this event, but such an interpretation would require significant suppression of the standard model τ-neutrino cross section.