Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(1): e2305282, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939283

RESUMO

Full exhaustion in specific energy/energy density of state-of-the-art LiNix Coy Mnz O2 (NCM)-based Li-ion batteries (LIB) is currently limited for reasons of NCM stability by upper cut-off voltages (UCV) below 4.3 V. At higher UCV, structural decomposition triggers electrode crosstalk in the course of enhanced transition metal dissolution and leads to severe specific capacity/energy fade; in the worst case to a sudden death phenomenon (roll-over failure). The additive lithium difluorophosphate (LiDFP) is known to suppress this by scavenging dissolved metals, but at the cost of enhanced toxicity due to the formation of organofluorophosphates (OFPs). Addition of film-forming electrolyte additives like vinylene carbonate (VC) can intrinsically decrease OFP formation in thermally aged LiDFP-containing electrolytes, though the benefit of this dual-additive approach can be questioned at higher UCVs. In this work, VC is shown to decrease the formation of potentially toxic OFPs within the electrolyte during cycling at conventional UCVs but triggers OFP formation at higher UCVs. The electrolyte contains soluble VC-polymerization products. These products are formed at the cathode during VC oxidation (and are found within the cathode electrolyte interphase (CEI), suggesting an OFP electrode crosstalk of VC decomposition species, as the OFP-precursor molecules are shown to be formed at the anode.

2.
J Environ Sci (China) ; 65: 103-115, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29548381

RESUMO

Sorption of tungstate on boehmite (γ-AlOOH) is increased by co-sorption with Co2+ over the near-neutral pH range. Batch uptake experiments show up to a 3-fold increase in tungstate uptake over the range WO42-=50-1000µmol/L compared to boehmite not treated with Co2+. Desorption experiments reveal a corresponding decrease in sorption reversibility for tungstate co-sorbed with Co2+. Reaction of boehmite with Co2+ results in the formation of CoAl layered double hydroxide (LDH), as confirmed by X-ray diffraction and X-ray absorption spectroscopy. Tungsten L3-edge X-ray absorption near edge structure (XANES) reveals that W(VI) is octahedrally coordinated in all sorption samples, with polymeric tungstate species forming at higher tungstate concentrations. X-ray diffraction and X-ray absorption spectroscopy indicate that the mechanism for enhancement of tungstate uptake is the formation of surface complexes on boehmite at low tungstate concentrations, while exchange into the CoAl LDH becomes important at higher tungstate concentrations. The results provide a basis for developing strategies to enhance tungstate sorption and to limit its environmental mobility at near-neutral pH conditions.


Assuntos
Hidróxido de Alumínio/química , Óxido de Alumínio/química , Modelos Químicos , Compostos de Tungstênio/química , Adsorção , Hidróxidos/química , Propriedades de Superfície
3.
J Colloid Interface Sci ; 461: 249-260, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26402784

RESUMO

Mechanisms of tungstate sorption on the mineral boehmite (γ-AlOOH) were studied using batch uptake experiments and X-ray absorption spectroscopy. Batch uptake experiments over the pH range 4-8 and [W]=50-2000 µM show typical oxyanion behavior, and isotherm experiments reveal continued uptake with increasing tungstate concentration without any clear uptake maximum. Desorption experiments showed that sorption is irreversible at pH 4 and partly reversible at pH 8. Tungsten L1- and L3-edge XANES spectroscopy indicates that all sorbed tungstates are octahedrally coordinated, even though the dominant solution species at pH 8 is a tetrahedral monotungstate. Tungsten L3-edge EXAFS analysis shows that sorbed tungstate occurs as polymeric form(s), as indicated by the presence of corner- and edge-sharing of distorted tungstate octahedra. The occurrence of polymeric tungstate on the surface at pH 8 indicates that sorption is accompanied by polymerization and a coordination change from tetrahedral (in solution) to distorted octahedral (on the surface). The strong tendency for tungstate polymerization on boehmite can explain the continued uptake without an apparent maximum in sorption, and the limited desorption behavior. Our results provide the basis for a predictive model of tungstate uptake by boehmite, which can be important for understanding tungstate mobility, toxicity, and bioavailability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA