Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Genet Metab Rep ; 36: 100988, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37670901

RESUMO

Background: Niemann-Pick disease type C (NPC) is a rare, fatal, pan-ethnic, autosomal recessive lysosomal storage disease characterized by progressive major organ failure and neurodegeneration. Preclinical studies confirmed a critical role of systemically administered hydroxypropyl-ß-cyclodextrin (HP-ß-CD; Trappsol® Cyclo™) in cholesterol metabolism and homeostasis in peripheral tissues of the body, including the liver, and in the central nervous system (CNS). Herein, the pharmacokinetics (PK), safety, and efficacy of HP-ß-CD, and biomarkers of NPC were assessed in pediatric and adult patients with NPC1. Methods: This was a multicenter, Phase I/II, randomized, double-blind, parallel-group, 48-week study (ClinicalTrials.gov identifier NCT02912793) to compare the PK of three different single intravenous (IV) doses of HP-ß-CD in pediatric and adult patients with NPC1 and to evaluate the efficacy and tolerability of three different dosages of HP-ß-CD in patients with NPC1 after long-term treatment. Twelve patients aged at least 2 years (2-39 years of age) with a confirmed diagnosis of NPC1 were randomized to receive one of three IV doses of HP-ß-CD (1500 mg/kg, 2000 mg/kg, or 2500 mg/kg) every 2 weeks for 48 weeks. All patients received HP-ß-CD; there was no placebo or other control. PK testing of plasma and cerebrospinal fluid (CSF) was at set times after the first infusion. Pharmacodynamic assessments included biomarkers of cholesterol metabolism (synthesis and breakdown products), N-palmitoyl-O-phosphocholineserine (PPCS), and specific biomarkers of CSF neurodegeneration (including total Tau), CNS inflammation (glial fibrillary acidic protein [GFAP] and tumor necrosis factor α [TNFα]), CNS cholesterol metabolism (24S-hydroxycholesterol) and inflammatory markers. Efficacy measures included clinical disease severity, neurologic symptoms, and clinical impressions of improvement. Safety assessment included physical examination, vital signs, clinical safety laboratory assessment and adverse events (AEs). Results: Nine patients completed the study, 2 in the 1500 mg/kg group, 4 in the 2000 mg/kg group and 3 in the 2500 mg/kg group. Three patients (all in the 1500 mg/kg group) discontinued the study because of either physician decision/site Principal Investigator (PI) discretion, withdrawal by subject/patient/parent/guardian, or other non-safety reasons. In 5 patients who underwent serial lumbar punctures, HP-ß-CD was detected in the CSF. Of the 9 patients who completed the study, 8 (88.9%) improved in at least two domains of the 17-Domain Niemann-Pick disease Type C-Clinical Severity Scale (17D-NPC-CSS), and 6 of these patients improved in at least one domain viewed by patients and their caregivers to be key to quality of life, namely, speech, swallow, fine and gross motor skills, and cognition. Of the 9 patients who completed the study, 7 were viewed by their treating physicians as having improved to some degree at the end of the study, and 2 remained stable; both outcomes are highly relevant in a progressive neurodegenerative disease. Some patients and families reported improvement in quality of life.All three doses of HP-ß-CD were well tolerated overall, with most treatment-emergent adverse events transient, mild-to-moderate in nature, and considered by the site PIs to be not related to study drug. Interpretation: This 48-week trial is the longest to date to evaluate the safety, tolerability, and efficacy across multiple clinical endpoints of IV administration of Trappsol® Cyclo™ (HP-ß-CD) in NPC1 patients. In pediatric and adult patients with NPC, Trappsol® Cyclo™ IV improved clinical signs and symptoms and was generally well tolerated. The findings presented here demonstrate a favorable benefit-risk profile and support the global pivotal trial now underway to evaluate the long-term treatment benefits and the potential of Trappsol® Cyclo™ as a disease-modifying treatment in this patient population.

2.
Mol Genet Metab ; 137(4): 309-319, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36279795

RESUMO

BACKGROUND: Niemann-Pick Disease Type C1 (NPC1) is a disorder of intracellular cholesterol and lipid trafficking that leads to the accumulation of cholesterol and lipids in the late endosomal/lysosomal compartment, resulting in systemic manifestations (including hepatosplenomegaly and lung infiltration) and neurodegeneration. Preclinical studies have demonstrated that systemically administered 2-hydroxypropyl-ß-cyclodextrin (HPßCD; Trappsol® Cyclo™) restores cholesterol metabolism and homeostasis in peripheral organs and tissues and in the central nervous system (CNS). Here, we assessed the safety, pharmacokinetics, and pharmacodynamics of HPßCD in peripheral tissues and the CNS in adult subjects with NPC1. METHODS: A Phase 1, randomized, double-blind, parallel group study enrolled 13 subjects with NPC1 who received either 1500 mg/kg or 2500 mg/kg HPßCD intravenously every 2 weeks for a total of 7 doses (14 weeks). Subjects were 18 years or older, with a confirmed diagnosis of NPC1 and evidence of systemic involvement on clinical assessment. Pharmacokinetic evaluations in plasma and cerebrospinal fluid (CSF) were performed at the first and seventh infusions. Pharmacodynamic assessments included biomarkers of systemic cholesterol synthesis (serum lathosterol) and degradation (serum 4ß-hydroxycholesterol), secondary sphingomyelin storage (plasma lysosphingomyelin-509, now more accurately referred to as N-palmitoyl-O-phosphocholineserine [PPCS]), and CNS-specific biomarkers of neurodegeneration (CSF total Tau) and cholesterol metabolism (serum 24(S)-hydroxycholesterol [24(S)-HC]). Safety monitoring included assessments of liver and kidney function, infusion related adverse events, and hearing evaluations. RESULTS: Ten subjects completed the study, with 6 at the 1500 mg/kg dose and 4 at the 2500 mg/kg dose. One subject withdrew following the first infusion after experiencing hypersensitivity pneumonitis, and 2 subjects withdrew after meeting a stopping rule related to hearing loss. Overall, HPßCD had an acceptable safety profile. The observed pharmacokinetic profile of HPßCD was similar following the first and seventh infusions, with a plasma half-life of 2 h, a maximum concentration reached at 6 to 8 h, and no evidence of accumulation. Serum biomarkers of cholesterol metabolism showed reduced synthesis and increased degradation. Compared to Baseline, filipin staining of liver tissue showed significant reductions of trapped unesterified cholesterol at both dose levels at Week 14. Plasma PPCS levels were also reduced. HPßCD was detected at low concentrations in the CSF (maximum, 33 µM) at both dose levels and persisted longer in CSF than in plasma. Total Tau levels in CSF decreased in most subjects. Serum levels of 24(S)-HC, a cholesterol metabolite from the CNS that is exported across the blood-brain barrier and into the circulation, decreased after both the first and seventh doses. Hence, pharmacodynamic assessments in both peripheral and CNS-related tissue show target engagement. While not the aim of the study, subjects reported favorable impacts on their quality of life. CONCLUSIONS: The plasma pharmacokinetics and pharmacodynamics of HPßCD administered at two intravenous dose levels to subjects with NPC1 were comparable to those observed in preclinical models. HPßCD cleared cholesterol from the liver and improved peripheral biomarkers of cholesterol homeostasis. At low CSF concentrations, HPßCD appeared to be pharmacologically active in the CNS based on the increased efflux of 24(S)-HC and reduction in CSF total Tau, a biomarker of CNS neurodegeneration. These data support the initiation of longer-term clinical trials to evaluate the safety and efficacy of intravenous HPßCD in subjects with NPC1. (ClinicalTrials.gov numbers: present trial, NCT02939547; open-label extension of the present trial, NCT03893071; global pivotal trial, NCT04860960).


Assuntos
Doença de Niemann-Pick Tipo A , Doença de Niemann-Pick Tipo C , Adulto , Humanos , 2-Hidroxipropil-beta-Ciclodextrina , Qualidade de Vida , Colesterol/metabolismo , Biomarcadores , Sistema Nervoso Central/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA