Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(6)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070326

RESUMO

Conjugation of photosensitizers (PS) with nanoparticles has been largely used as a strategy to stabilize PS in the biological medium resulting in photosensitizing nanoparticles of enhanced photoactivity. Herein, (Meso-5, 10, 15, 20-tetrakis (3-hydroxyphenyl) phorphyryn (mTHPP) was conjugated with diamond nanoparticles (ND) by covalent bond. Nanoconjugate ND-mTHPP showed suitable stability in aqueous suspension with 58 nm of hydrodynamic diameter and Zeta potential of -23 mV. The antibacterial activity of ND-mTHPP was evaluated against Escherichia coli for different incubation times (0-24 h). The optimal activity was observed after 2 h of incubation and irradiation (660 nm; 51 J/cm2) performed right after the addition of ND-mTHPP (100 µg/mL) to the bacterial suspension. The inhibitory activity was 56% whereas ampicillin at the same conditions provided only 14% of bacterial growth inhibition. SEM images showed agglomerate of ND-mTHPP adsorbed on the bacterial cell wall, suggesting that the antimicrobial activity of ND-mTHPP was afforded by inducing membrane damage. Cytotoxicity against murine embryonic fibroblast cells (MEF) was also evaluated and ND-mTHPP was shown to be noncytotoxic since viability of cells cultured for 24 h in the presence of the nanoconjugate (100 µg/mL) was 78%. Considering the enhanced antibacterial activity and the absence of cytotoxic effect, it is possible to consider the ND-mTHPP nanoconjugate as promising platform for application in antimicrobial photodynamic therapy (aPDT).

2.
Colloids Surf B Biointerfaces ; 202: 111636, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33706163

RESUMO

The increasing incidence of diseases caused by the harmful effects of UV radiation in skin, predominantly skin cancer, induce the search for more efficient photoprotector agents. Nowadays, titanium dioxide (TiO2) and zinc oxide (ZnO) are the most widely used photoprotectors and therefore form the main components of commercially available sunscreens. Although the outstanding efficiency in absorbing and scattering UV radiation, mainly as nanoparticles, recent studies have raised concerns regarding the safe use of these nanoparticles, especially due to their high generation of reactive oxygen species (ROS). Thereby, this work focus on the evaluation of the photoprotective activity of zirconia nanoparticles (ZrO2 NPs) and their cytotoxicity study in the presence and absence of UV irradiation. The ZrO2 NPs were synthesized by hydrothermal method and their hydrodynamic diameter, Zeta potential and colloidal stability were characterized by dynamic light scattering. The morphology and size were observed by transmission electron microscopy. The synthesis resulted in ZrO2 NPs with 50 nm of diameter and 56 nm of hydrodynamic diameter. The high colloidal stability was evidenced by the high value of Zeta potential (+48 mV) and low polydispersity index (0.09). The UV-vis spectrum of the ZrO2 NPs in aqueous suspension showed an intense light scattering below 250 and a wide absorption band at 285 nm. The poor generation of ROS by ZrO2 NPs was confirmed by the absence of photodegradation of methylene blue after long periods of irradiation. The in vitro assays performed with HaCaT cell line showed that the cell viability did not decrease in the absence of irradiation. However, after 24 h of incubation, the cell viability decreased under UV-irradiation in comparison with irradiated cells that were not incubated with ZrO2 NPs. Notably, in these assays, the cells were incubated with the ZrO2 NPs and after 24 h, they were replaced by fresh culture medium before the cell viability assay. Nevertheless, another in vitro assay was performed in order to evaluate the photoprotective activity of ZrO2 NPs. The cells were irradiated in the presence of ZrO2 NPs suspension. In this case, cell viability did not decrease even after long period of UV-irradiation and at higher concentration of ZrO2 NPs. The present results showed that ZrO2 NPs could be an interesting material to be used for skin photoprotection since they showed low cytotoxicity, absence of ROS generation and protection under UV irradiation. Additionally, the ZrO2 NPs suspension was transparent as usually required for applications in sunscreens.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Raios Ultravioleta , Zircônio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA