Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Heliyon ; 10(6): e27283, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38509993

RESUMO

Context: Several curricular initiatives have been developed to improve the acquisition of research competencies by Health Science students. Objectives: To know how students self-perceived of whether their participation in the XIV National Research Congress for Undergraduate Students of Health Sciences had helped them in the acquisition of 36 research-related transferable competencies (TCs) common to Health Science degrees. Methods: A survey design (Cronbach's alpha = 0.924), using a self-administered questionnaire, was conducted among undergraduate students who voluntarily participated in the Congress. Data analysis was performed using SPSS 25 and Statgraphics 19. Statistical significance was considered for P < 0.05. Results: Eighty-one students from 12 Health Science degree programs responded. Key findings are presented in a structured manner, using a Likert-5 scale. Twenty-five of the competencies surveyed obtained an average ≥ 4 highlighting: "Critically evaluate and know how to use sources of clinical and biomedical information to obtain, organize, interpret, and communicate scientific and health information"; "To be able to formulate hypotheses, collect and critically evaluate information for problem solving, following the scientific method", "Critical analysis and research" and "Communicate effectively and clearly, orally and in writing with other professionals". Significance was found in 15 competencies. The development of the competencies "Teamwork", "Critical reasoning" and "Analysis and synthesis abilities" was considered to be of greater "personal utility" by the respondents. Conclusion: Participation in this event contributed to the development of research-related TCs, critical analysis and information management and communication, especially in relation to learning the sources of clinical and biomedical information, to know, following the scientific method, how to formulate hypotheses that allow students to solve problems in their professional activity. The experience was significantly influenced by the respondents' year, the type of participation in the event and the gender of the students. Limitations and suggestions regarding future research are discussed to encourage further exploration of the topic.

2.
Stroke ; 54(10): 2652-2665, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37694402

RESUMO

BACKGROUND: Cognitive dysfunction is a frequent stroke sequela, but its pathogenesis and treatment remain unresolved. Involvement of aberrant hippocampal neurogenesis and maladaptive circuitry remodeling has been proposed, but their mechanisms are unknown. Our aim was to evaluate potential underlying molecular/cellular events implicated. METHODS: Stroke was induced by permanent occlusion of the middle cerebral artery occlusion in 2-month-old C57BL/6 male mice. Hippocampal metabolites/neurotransmitters were analyzed longitudinally by in vivo magnetic resonance spectroscopy. Cognitive function was evaluated with the contextual fear conditioning test. Microglia, astrocytes, neuroblasts, interneurons, γ-aminobutyric acid (GABA), and c-fos were analyzed by immunofluorescence. RESULTS: Approximately 50% of mice exhibited progressive post-middle cerebral artery occlusion cognitive impairment. Notably, immature hippocampal neurons in the impaired group displayed more severe aberrant phenotypes than those from the nonimpaired group. Using magnetic resonance spectroscopy, significant bilateral changes in hippocampal metabolites, such as myo-inositol or N-acetylaspartic acid, were found that correlated, respectively, with numbers of glia and immature neuroblasts in the ischemic group. Importantly, some metabolites were specifically altered in the ipsilateral hippocampus suggesting its involvement in aberrant hippocampal neurogenesis and remodeling processes. Specifically, middle cerebral artery occlusion animals with higher hippocampal GABA levels displayed worse cognitive outcome. Implication of GABA in this setting was supported by the amelioration of ischemia-induced memory deficits and aberrant hippocampal neurogenesis after blocking pharmacologically GABAergic neurotransmission, an intervention which was ineffective when neurogenesis was inhibited. These data suggest that GABA exerts its detrimental effect, at least partly, by affecting morphology and integration of newborn neurons into the hippocampal circuits. CONCLUSIONS: Hippocampal GABAergic neurotransmission could be considered a novel diagnostic and therapeutic target for poststroke cognitive impairment.


Assuntos
Disfunção Cognitiva , Acidente Vascular Cerebral , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Infarto da Artéria Cerebral Média , Disfunção Cognitiva/etiologia , Hipocampo , Neurogênese
3.
Front Cell Neurosci ; 17: 1219847, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636586

RESUMO

Chronic cerebral hypoperfusion due to carotid artery stenosis is a major cause of vascular cognitive impairment and dementia (VCID). Bilateral carotid artery stenosis (BCAS) in rodents is a well-established model of VCID where most studies have focused on white matter pathology and subsequent cognitive deficit. Therefore, our aim was to study the implication of adult hippocampal neurogenesis in hypoperfusion-induced VCID in mice, and its relationship with cognitive hippocampal deficits. Mice were subjected to BCAS; 1 and 3 months later, hippocampal memory and neurogenesis/cell death were assessed, respectively, by the novel object location (NOL) and spontaneous alternation performance (SAP) tests and by immunohistology. Hypoperfusion was assessed by arterial spin labeling-magnetic resonance imaging (ASL-MRI). Hypoperfused mice displayed spatial memory deficits with decreased NOL recognition index. Along with the cognitive deficit, a reduced number of newborn neurons and their aberrant morphology indicated a remarkable impairment of the hippocampal neurogenesis. Both increased cell death in the subgranular zone (SGZ) and reduced neuroblast proliferation rate may account for newborn neurons number reduction. Our data demonstrate quantitative and qualitative impairment of adult hippocampal neurogenesis disturbances associated with cerebral hypoperfusion-cognitive deficits in mice. These findings pave the way for novel diagnostic and therapeutic targets for VCID.

4.
Brain Behav Immun ; 80: 573-582, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31059808

RESUMO

Ischemic stroke is one of the leading causes of death and disability with an urgent need for innovative therapies, especially targeting the chronic phase. New evidence has emerged showing that Toll-Like Receptor 4 (TLR4), a key mediator of brain damage after stroke, may be involved in brain repair by neurogenesis modulation. The aim of this study is to analyze the role of TLR4 in the different stages of neurogenesis initiated in the subventricular zone (SVZ) over time after stroke in mice. Wildtype and TLR4-deficient mice underwent experimental ischemia, and neural stem/progenitor cells (NSPCs) proliferation and migration were analyzed by using FACS analysis, fluorescence densitometry, RT-qPCR and in vitro assays. Our results show that both groups, wildtype and knock-out animals, present a similar pattern of bilateral cell proliferation at the SVZ, with a decrease in NSPCs proliferation in the acute phase of stroke. We also show that TLR4 activation, very likely mediated by ligands such as HMGB1 released to CSF after stroke, is necessary to keep an increased proliferation of NSCs as well as to promote differentiation from type C cells into neuroblasts promoting their migration. TLR4 activation was also implicated in earlier expression of SDF-1α and faster recovery of BDNF expression after stroke. These results support TLR4 as an important therapeutic target in the modulation of neurogenesis after stroke.


Assuntos
Ventrículos Laterais/metabolismo , Células-Tronco Neurais/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Quimiocina CXCL12/metabolismo , Proteína HMGB1/metabolismo , Ventrículos Laterais/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/fisiologia , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Acidente Vascular Cerebral/tratamento farmacológico , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/fisiologia
5.
Stroke ; 48(1): 204-212, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27899748

RESUMO

BACKGROUND AND PURPOSE: Stroke is a leading cause of adult disability characterized by physical, cognitive, and emotional disturbances. Unfortunately, pharmacological options are scarce. The cannabinoid type-2 receptor (CB2R) is neuroprotective in acute experimental stroke by anti-inflammatory mechanisms. However, its role in chronic stroke is still unknown. METHODS: Stroke was induced by permanent middle cerebral artery occlusion in mice; CB2R modulation was assessed by administering the CB2R agonist JWH133 ((6aR,10aR)-3-(1,1-dimethylbutyl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran) or the CB2R antagonist SR144528 (N-[(1S)-endo-1,3,3-trimethylbicyclo-[2.2.1]-heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide) once daily from day 3 to the end of the experiment or by CB2R genetic deletion. Analysis of immunofluorescence-labeled brain sections, 5-bromo-2´-deoxyuridine (BrdU) staining, fluorescence-activated cell sorter analysis of brain cell suspensions, and behavioral tests were performed. RESULTS: SR144528 decreased neuroblast migration toward the boundary of the infarct area when compared with vehicle-treated mice 14 days after middle cerebral artery occlusion. Consistently, mice on this pharmacological treatment, like mice with CB2R genetic deletion, displayed a lower number of new neurons (NeuN+/BrdU+ cells) in peri-infarct cortex 28 days after stroke when compared with vehicle-treated group, an effect accompanied by a worse sensorimotor performance in behavioral tests. The CB2R agonist did not affect neurogenesis or outcome in vivo, but increased the migration of neural progenitor cells in vitro; the CB2R antagonist alone did not affect in vitro migration. CONCLUSIONS: Our data support that CB2R is fundamental for driving neuroblast migration and suggest that an endocannabinoid tone is required for poststroke neurogenesis by promoting neuroblast migration toward the injured brain tissue, increasing the number of new cortical neurons and, conceivably, enhancing motor functional recovery after stroke.


Assuntos
Neurogênese/fisiologia , Receptor CB2 de Canabinoide/fisiologia , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Canfanos/farmacologia , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/efeitos dos fármacos , Pirazóis/farmacologia , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Recuperação de Função Fisiológica/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Resultado do Tratamento
6.
Clin Lab ; 61(7): 709-16, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26299069

RESUMO

BACKGROUND: The metabolic clearance of prolactin (PRL) is partially executed by the kidney. Here, we investigate the urine excretion of PRL in patients with Diabetes Mellitus and renal impairment. METHODS: Serum and urine samples were collected from male, mestizo patients in central Mexico employing a cross-sectional study design. Ninety-eight individuals had either no diabetes and normal renal function (control), diabetes and normal renal function, or diabetes with impaired renal function. PRL was determined by a chemiluminescent immunometric assay; protein, albumin, and creatinine were evaluated using quantitative colorimetric assays. The results were analyzed using ANOVA-testing. RESULTS: Patients with Diabetes Mellitus and renal impairment had significantly higher urine PRL levels than patients with Diabetes Mellitus and normal renal function and control patients. Higher urine PRL levels were associated with lower glomerular filtration rates, higher serum creatinine, and higher urinary albumin-to-creatinine ratios (UACR). Urine PRL levels correlated positively with UACR. Serum PRL levels were similar among groups. CONCLUSIONS: Patients with Diabetes Mellitus and impaired renal function demonstrate a high urinary PRL excretion. Urinary PRL excretion in the context of proteinuria could contribute to PRL dysregulation in renal impairment.


Assuntos
Nefropatias Diabéticas/diagnóstico , Rim/metabolismo , Prolactina/urina , Eliminação Renal , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Albuminúria/diagnóstico , Albuminúria/fisiopatologia , Albuminúria/urina , Biomarcadores/sangue , Biomarcadores/urina , Estudos de Casos e Controles , Creatinina/sangue , Creatinina/urina , Estudos Transversais , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/fisiopatologia , Nefropatias Diabéticas/urina , Retinopatia Diabética/etiologia , Retinopatia Diabética/fisiopatologia , Retinopatia Diabética/urina , Taxa de Filtração Glomerular , Humanos , Rim/fisiopatologia , Masculino , México , Pessoa de Meia-Idade , Regulação para Cima , Adulto Jovem
7.
Artigo em Inglês | MEDLINE | ID: mdl-25570996

RESUMO

It has been proved that audio and visual cueing can improve the motor performance of Parkinson's disease patients. Specially, gait can benefit from repetitive sessions of exercises using cues. Nevertheless, these effects are not permanent and fade away with time, in that sense, home game systems can be an excellent platform for patients to perform daily exercises, as well as to coach and guide them in a smarter way. Within this work a method to track the walking movement is proposed based on the signals coming from the Kinect sensor of Microsoft. At the same time, different setups have been tested in order to study the feasibility of using this sensor to build a game platform for gait rehabilitation for Parkinson's disease patients.


Assuntos
Marcha/fisiologia , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Doença de Parkinson/fisiopatologia , Doença de Parkinson/reabilitação , Adulto , Humanos , Processamento de Sinais Assistido por Computador , Caminhada
8.
Artigo em Inglês | MEDLINE | ID: mdl-24111478

RESUMO

This paper summarizes the experience and the lessons learned from the European project PERFORM (A sophisticated multi-parametric system FOR the continuous effective assessment and monitoring of motor status in Parkinson's disease and other neurodegenerative diseases). PERFORM is aimed to provide a telehealth system for the remote monitoring of Parkinson's disease patients (PD) at their homes. This paper explains the global experience with PERFORM. It summarizes the technical performance of the system and the feedback received from the patients in terms of usability and wearability.


Assuntos
Doença de Parkinson/diagnóstico , Telemedicina , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monitorização Ambulatorial , Projetos Piloto , Tremor/diagnóstico
9.
Stroke ; 44(8): 2333-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23723308

RESUMO

BACKGROUND AND PURPOSE: Sirtuin 1 (SIRT1) is a member of NAD+-dependent protein deacetylases implicated in a wide range of cellular functions and has beneficial properties in pathologies including ischemia/reperfusion processes and neurodegeneration. However, no direct evidence has been reported on the direct implication of SIRT1 in ischemic stroke. The aim of this study was to establish the role of SIRT1 in stroke using an experimental model in mice. METHODS: Wild-type and Sirt1-/- mice were subjected to permanent focal ischemia by permanent ligature. In another set of experiments, wild-type mice were treated intraperitoneally with vehicle, activator 3 (SIRT1 activator, 10 mg/kg), or sirtinol (SIRT1 inhibitor, 10 mg/kg) for 10 minutes, 24 hours, and 40 hours after ischemia. Brains were removed 48 hours after ischemia for determining the infarct volume. Neurological outcome was evaluated using the modified neurological severity score. RESULTS: Exposure to middle cerebral artery occlusion increased SIRT1 expression in neurons of the ipsilesional mouse brain cortex. Treatment of mice with activator 3 reduced infarct volume, whereas sirtinol increased ischemic injury. Sirt1-/- mice displayed larger infarct volumes after ischemia than their wild-type counterparts. In addition, SIRT1 inhibition/deletion was concomitant with increased acetylation of p53 and nuclear factor κB (p65). CONCLUSIONS: These results support the idea that SIRT1 plays an important role in neuroprotection against brain ischemia by deacetylation and subsequent inhibition of p53-induced and nuclear factor κB-induced inflammatory and apoptotic pathways.


Assuntos
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Sirtuína 1/fisiologia , Sirtuínas/fisiologia , Acetilação , Alelos , Animais , Proteínas Reguladoras de Apoptose/fisiologia , Encéfalo/patologia , Isquemia Encefálica/patologia , Isquemia Encefálica/prevenção & controle , Infarto da Artéria Cerebral Média/complicações , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/fisiologia , Camundongos , Camundongos Knockout , NF-kappa B/antagonistas & inibidores , NF-kappa B/fisiologia , Distribuição Aleatória , Transdução de Sinais/genética , Método Simples-Cego , Sirtuína 1/deficiência , Sirtuína 1/genética , Sirtuínas/administração & dosagem , Sirtuínas/antagonistas & inibidores , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/biossíntese , Regulação para Cima/fisiologia
10.
J Neurochem ; 126(6): 819-26, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23600725

RESUMO

CDP-choline has shown neuroprotective effects in cerebral ischemia. In humans, although a recent trial International Citicoline Trial on Acute Stroke (ICTUS) has shown that global recovery is similar in CDP-choline and placebo groups, CDP-choline was shown to be more beneficial in some patients, such as those with moderate stroke severity and not treated with t-PA. Several mechanisms have been proposed to explain the beneficial actions of CDP-choline. We have now studied the participation of Sirtuin1 (SIRT1) in the neuroprotective actions of CDP-choline. Fischer rats and Sirt1⁻/⁻ mice were subjected to permanent focal ischemia. CDP-choline (0.2 or 2 g/kg), sirtinol (a SIRT1 inhibitor; 10 mg/kg), and resveratrol (a SIRT1 activator; 2.5 mg/kg) were administered intraperitoneally. Brains were removed 24 and 48 h after ischemia for western blot analysis and infarct volume determination. Treatment with CDP-choline increased SIRT1 protein levels in brain concomitantly to neuroprotection. Treatment with sirtinol blocked the reduction in infarct volume caused by CDP-choline, whereas resveratrol elicited a strong synergistic neuroprotective effect with CDP-choline. CDP-choline failed to reduce infarct volume in Sirt1⁻/⁻ mice. Our present results demonstrate a robust effect of CDP-choline like SIRT1 activator by up-regulating its expression. Our findings suggest that therapeutic strategies to activate SIRT1 may be useful in the treatment of stroke. Sirtuin 1 (SIRT1) is implicated in a wide range of cellular functions. Regarding stroke, there is no direct evidence. We have demonstrated that citicoline increases SIRT1 protein levels in brain concomitantly to neuroprotection. Citicoline fails to reduce infarct volume in Sirt1⁻/⁻ mice. Our findings suggest that therapeutic strategies acting on SIRT1 may be useful in the treatment of stroke.


Assuntos
Citidina Difosfato Colina/farmacologia , Fármacos Neuroprotetores , Nootrópicos/farmacologia , Sirtuína 1/biossíntese , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Benzamidas/farmacologia , Western Blotting , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Células Cultivadas , Sinergismo Farmacológico , Infarto da Artéria Cerebral Média/patologia , Masculino , Camundongos , Camundongos Knockout , Monócitos/metabolismo , Naftóis/farmacologia , Neurônios/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Resveratrol , Sirtuína 1/antagonistas & inibidores , Estilbenos/farmacologia
12.
Rev Neurol ; 53(10): 607-18, 2011 Nov 16.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-22052176

RESUMO

A critical aspect in all models is the assessment of the final outcome of the modelling procedure. In the case of a focal ischaemic brain injury, apart from the determination of the size of the lesion, another valuable tool is the evaluation of the final functional deficit. Indeed, ischaemic damage leads to the appearance of different degrees of sensoriomotor and cognitive impairments, which may yield useful information on location and size of the lesion and on the efficacy of neuroprotective treatments after the acute injury. In addition, the magnitude of these impairments may also be useful to predict final outcome and to evaluate neuro-restorative therapies in a long-term scenario. To this aim, a wide range of tests has been developed which allow the quantification of all these neurological symptoms. This review intends to compile the most useful behavioural tests designed to assess neurological symptoms in studies of focal experimental cerebral ischemia in rodents induced by middle cerebral artery occlusion, the most commonly used model of ischaemic stroke.


Assuntos
Isquemia Encefálica/diagnóstico , Isquemia Encefálica/fisiopatologia , Modelos Animais de Doenças , Testes Neuropsicológicos , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Humanos , Camundongos , Atividade Motora/fisiologia , Avaliação de Resultados em Cuidados de Saúde , Prognóstico , Ratos , Acidente Vascular Cerebral/diagnóstico
13.
Stroke ; 42(1 Suppl): S33-5, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21164125

RESUMO

BACKGROUND AND PURPOSE: In this work, we review recent data on the actions of citicoline, citicoline is a drug with demonstrated neuroprotective properties in both animals and humans. Summary of Review- For neuroprotection, mechanisms involved are the improvement of cellular functions aimed to control excitotoxicity and to maintain cellular adenosine 5'-triphosphate levels by preserving membrane function and integrity at different levels. Importantly, these actions are theoretically achieved without interfering with possible underlying mechanisms for neurorepair. Furthermore, citicoline stimulates neuronal plasticity and improves sensorimotor recovery in the chronic phase of experimental stroke. CONCLUSIONS: Although the mechanisms of some of these actions remain to be elucidated, so far citicoline appears as a drug with the ability to promote "safe" neuroprotection capable of enhancing endogenous protective pathways at the same time as preparing the scenario for plasticity.


Assuntos
Citidina Difosfato Colina/uso terapêutico , Plasticidade Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Nootrópicos/uso terapêutico , Recuperação de Função Fisiológica/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Trifosfato de Adenosina/metabolismo , Animais , Membrana Celular/metabolismo , Intervalo Livre de Doença , Humanos , Acidente Vascular Cerebral/metabolismo
14.
BMC Mol Biol ; 10: 57, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-19531214

RESUMO

BACKGROUND: Studies of gene expression in experimental cerebral ischaemia models can contribute to understanding the pathophysiology of brain ischaemia and to identifying prognostic markers and potential therapeutic targets. The normalization of relative qRT-PCR data using a suitable reference gene is a crucial prerequisite for obtaining reliable conclusions. No validated housekeeping genes have been reported for the relative quantification of the mRNA expression profile activated in in-vitro ischaemic conditions, whereas for the in-vivo model different reference genes have been used. The present study aims to determine the expression stability of ten housekeeping genes (Gapdh, beta2m, Hprt, Ppia, Rpl13a, Oaz1, 18S rRNA, Gusb, Ywhaz and Sdha) to establish their suitability as control genes for in-vitro and in-vivo cerebral ischaemia models. RESULTS: The expression stability of the candidate reference genes was evaluated using the 2-Delta C'T method and ANOVA followed by Dunnett's test. For the in-vitro model using primary cultures of rat astrocytes, all genes analysed except for Rpl13a and Sdha were found to have significantly different levels of mRNA expression. These different levels were also found in the case of the in-vivo model of pMCAO in rats except for Hprt, Sdha and Ywhaz mRNA, where the expression did not vary. Sdha and Ywhaz were identified by geNorm and NormFinder as the two most stable genes. CONCLUSION: We have validated endogenous control genes for qRT-PCR analysis of gene expression in in-vitro and in-vivo cerebral ischaemia models. For normalization purposes, Rpl13a and Sdha are found to be the most suitable genes for the in-vitro model and Sdha and Ywhaz for the in-vivo model. Genes previously used as housekeeping genes for the in-vivo model in the literature were not validated as good control genes in the present study, showing the need for careful evaluation for each new experimental setup.


Assuntos
Isquemia Encefálica/genética , Expressão Gênica , Reação em Cadeia da Polimerase , Animais , Astrócitos/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Humanos , Ratos
15.
J Neurosci ; 29(12): 3875-84, 2009 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-19321784

RESUMO

Peroxisome proliferator-activated receptors gamma (PPARgamma) are nuclear receptors with essential roles as transcriptional regulators of glucose and lipid homeostasis. PPARgamma are also potent anti-inflammatory receptors, a property that contributes to the neuroprotective effects of PPARgamma agonists in experimental stroke. The mechanism of these beneficial actions, however, is not fully elucidated. Therefore, we have explored further the actions of the PPARgamma agonist rosiglitazone in experimental stroke induced by permanent middle cerebral artery occlusion (MCAO) in rodents. Rosiglitazone induced brain 5-lipoxygenase (5-LO) expression in ischemic rat brain, concomitantly with neuroprotection. Rosiglitazone also increased cerebral lipoxin A(4) (LXA(4)) levels and inhibited MCAO-induced production of leukotriene B4 (LTB(4)). Furthermore, pharmacological inhibition and/or genetic deletion of 5-LO inhibited rosiglitazone-induced neuroprotection and downregulation of inflammatory gene expression, LXA(4) synthesis and PPARgamma transcriptional activity in rodents. Finally, LXA(4) caused neuroprotection, which was partly inhibited by the PPARgamma antagonist T0070907, and increased PPARgamma transcriptional activity in isolated nuclei, showing for the first time that LXA(4) has PPARgamma agonistic actions. Altogether, our data illustrate that some effects of rosiglitazone are attributable to de novo synthesis of 5-LO, able to induce a switch from the synthesis of proinflammatory LTB(4) to the synthesis of the proresolving LXA(4). Our study suggests novel lines of study such as the interest of lipoxin-like anti-inflammatory drugs or the use of these molecules as prognostic and/or diagnostic markers for pathologies in which inflammation is involved, such as stroke.


Assuntos
Araquidonato 5-Lipoxigenase/fisiologia , Lipoxinas/biossíntese , Fármacos Neuroprotetores/farmacologia , PPAR gama/agonistas , Acidente Vascular Cerebral/metabolismo , Tiazolidinedionas/farmacologia , Animais , Araquidonato 5-Lipoxigenase/biossíntese , Araquidonato 5-Lipoxigenase/genética , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Infarto Encefálico/etiologia , Infarto Encefálico/metabolismo , Infarto Encefálico/patologia , Infarto da Artéria Cerebral Média/complicações , Leucotrieno B4/biossíntese , Camundongos , PPAR gama/fisiologia , Ratos , Rosiglitazona , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/patologia
16.
J Neurochem ; 109(1): 287-94, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19200341

RESUMO

It has been demonstrated that a short ischemic event (ischemic preconditioning, IPC) results in a subsequent resistance to severe ischemia (ischemic tolerance, IT). We have recently demonstrated the role of innate immunity and in particular of toll-like receptor (TLR) 4 in brain ischemia. Several evidences suggest that TLR4 might also be involved in IT. Therefore, we have now used an in vivo model of IPC to investigate whether TLR4 is involved in IT. A 6-min temporary bilateral common carotid arteries occlusion was used for focal IPC and it was performed on TLR4-deficient mice (C57BL/10ScNJ) and animals that express TLR4 normally (C57BL/10ScSn). To assess the ability of IPC to induce IT, permanent middle cerebral artery occlusion was performed 48 h after IPC. Stroke outcome was evaluated by determination of infarct volume and assessment of neurological scores. IPC caused neuroprotection as shown by a reduction in infarct volume and better outcome in mice expressing TLR4 normally. TLR4-deficient mice showed less IPC-induced neuroprotection than wild-type animals. Western blot analysis of tumor necrosis factor alpha (TNF-alpha), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) showed an up-regulation in the expression of these proteins in both substrains of mice measured 18, 24 and 48 h after IPC, being higher in mice with TLR4. Similarly, nuclear factor-kappa B (NF-kappaB) activation was observed 18, 24 and 48 h after IPC, being more intense in TLR4-expressing mice. These data demonstrate that TLR4 signalling is involved in brain tolerance as shown by the difference in the percentage of neuroprotection produced by IPC between ScSn and ScNJ (60% vs. 18%). The higher expression of TNF-alpha, iNOS and cyclooxygenase-2 and NF-kappaB activation in mice expressing TLR4 is likely to participate in this endogenous neuroprotective effect.


Assuntos
Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/prevenção & controle , Precondicionamento Isquêmico , Receptor 4 Toll-Like/fisiologia , Animais , Ciclo-Oxigenase 2/biossíntese , Ciclo-Oxigenase 2/genética , Infarto da Artéria Cerebral Média/enzimologia , Precondicionamento Isquêmico/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/fisiologia , Fármacos Neuroprotetores/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Transdução de Sinais/genética , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
17.
Am J Physiol Regul Integr Comp Physiol ; 296(4): R979-85, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19193944

RESUMO

Stress is known to be one of the risk factors of stroke, but only a few experimental studies have examined the possible mechanisms by which prior stress may affect stroke outcome. In stroke patients, infections impede neurological recovery and increase morbidity as well as mortality. We previously reported that stress induces a bacterial translocation and that prior immobilization stress worsens experimental stroke outcome through mechanisms that involve inflammatory mediators such as release of proinflammatory cytokines and enzyme activation. We now investigate whether bacterial translocation from the intestinal flora of rats with stress before experimental ischemia is involved in stroke outcome. We used an experimental paradigm consisting of exposure of Fischer rats to repeated immobilization sessions before permanent middle cerebral artery occlusion (MCAO). The presence of bacteria and the levels and expression of different mediators involved in the bacterial translocation were analyzed. Our results indicate that stress before stroke is related to the presence of bacteria in different organs (mesenteric nodes, spleen, liver, and lung) after MCAO and increases inflammatory colonic parameters (such as cyclooxygenase-2, inducible nitric oxide synthase, and myeloperoxidase), but decreases colonic immunoglobulin A, and these results are correlated with colonic inflammation and bacterial translocation. Understanding the implication of bacterial translocation during stress-induced stroke worsening is of great potential clinical relevance, given the high incidence of infections after severe stroke and their main role in mortality and morbidity in stroke patients.


Assuntos
Translocação Bacteriana , Colite/etiologia , Colo/microbiologia , Infarto da Artéria Cerebral Média/complicações , Estresse Psicológico/complicações , Acidente Vascular Cerebral/etiologia , Animais , Antibacterianos/farmacologia , Translocação Bacteriana/efeitos dos fármacos , Colite/imunologia , Colite/microbiologia , Colite/patologia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/patologia , Corticosterona/sangue , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Imunoglobulina A/metabolismo , Infarto da Artéria Cerebral Média/patologia , Pulmão/microbiologia , Linfonodos/microbiologia , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Penicilina G/farmacologia , Permeabilidade , Peroxidase/metabolismo , Ratos , Ratos Endogâmicos F344 , Restrição Física , Fatores de Risco , Baço/microbiologia , Estresse Psicológico/imunologia , Estresse Psicológico/microbiologia , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/microbiologia , Acidente Vascular Cerebral/patologia
18.
Circulation ; 118(14): 1450-9, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18794391

RESUMO

BACKGROUND: The liver X receptors (LXRs) belong to the nuclear receptor superfamily and act as transcriptional regulators of cholesterol metabolism in several tissues. Recent work also has identified LXRs as potent antiinflammatory molecules in macrophages and other immune cells. Combined changes in lipid and inflammatory profiles are likely mediating the protective role of LXRs in models of chronic injury like atherosclerosis. These beneficial actions, however, have not been illustrated in other models of acute injury such as stroke in which inflammation is an important pathophysiological feature. METHODS AND RESULTS: We have studied LXR expression and function in the course of experimental stroke caused by permanent middle cerebral artery occlusion in rats and mice. Here, we show that administration of the synthetic LXR agonists GW3965 or TO901317 after the ischemic occlusion improves stroke outcome as shown by decreased infarct volume area and better neurological scores in rats. Neuroprotection observed with LXR agonists correlated with decreased expression of proinflammatory genes in the brain and with reduced nuclear factor-kappaB transcriptional activity. Loss of function studies using LXRalpha,beta(-/-) mice demonstrated that the effect of LXR agonists is receptor specific. Interestingly, infarcted brain area and inflammatory signaling were significantly extended in LXRalpha,beta(-/-) mice compared with control animals, indicating that endogenous LXR signaling mediates neuroprotection in this setting. CONCLUSIONS: This work highlights the transcriptional action of LXR as a protective pathway in brain injury and the potential use of LXR agonists as therapeutic agents in stroke.


Assuntos
Isquemia Encefálica/patologia , Encéfalo/patologia , Proteínas de Ligação a DNA/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Receptores Citoplasmáticos e Nucleares/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/prevenção & controle , Animais , Benzoatos/farmacologia , Benzoatos/uso terapêutico , Benzilaminas/farmacologia , Benzilaminas/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/prevenção & controle , Proteínas de Ligação a DNA/agonistas , Inflamação/patologia , Inflamação/prevenção & controle , Receptores X do Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Fármacos Neuroprotetores/farmacologia , Receptores Nucleares Órfãos , Ratos , Ratos Endogâmicos F344 , Receptores Citoplasmáticos e Nucleares/agonistas , Acidente Vascular Cerebral/metabolismo
19.
Stroke ; 39(4): 1314-20, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18309167

RESUMO

BACKGROUND AND PURPOSE: Psychological stress causes an inflammatory response in the brain and is able to exacerbate brain damage caused by experimental stroke. We previously reported that subacute immobilization stress in mice worsens stroke outcome through mechanisms that involve inflammatory mechanisms, such as accumulation of oxidative/nitrosative mediators and expression of inducible nitric oxide synthase and cyclooxygenase-2 in the brain. Some of these inflammatory mediators could be regulated by innate immunity, the activation of which takes place in the brain and produces an inflammatory response mediated by toll-like receptors (TLRs). Recently, we described the implications of TLR4 in ischemic injury, but the role of TLR4 in stress has not yet been examined. We therefore investigated whether inflammation produced by immobilization stress differs in mice that lack a functional TLR4 signaling pathway. METHODS: We used an experimental paradigm consisting of the exposure of mice to repeated immobilization sessions (1 hour daily for 7 days) before permanent middle cerebral artery occlusion. RESULTS: We found that TLR4-deficient mice subjected to subacute stress had a better behavioral condition compared with normal mice (C3H/HeN) and that this effect was associated with a minor inflammatory response (cyclooxygenase-2 and inducible nitric oxide synthase expression) and lipid peroxidation (malondialdehyde levels) in brain tissue. Furthermore, previous exposure to stress was followed by a smaller infarct volume after permanent middle cerebral artery occlusion in TLR4-deficient mice than in mice that express TLR4 normally. CONCLUSIONS: Our results indicate that TLR4 is involved in the inflammatory response after subacute stress and its exacerbating effect on stroke. These data implicate the effects of innate immunity on inflammation and damage in the brain after stroke.


Assuntos
Isquemia Encefálica/imunologia , Encefalite/imunologia , Estresse Psicológico/imunologia , Acidente Vascular Cerebral/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Comportamento Animal , Isquemia Encefálica/complicações , Isquemia Encefálica/patologia , Corticosterona/sangue , Ciclo-Oxigenase 2/genética , Encefalite/complicações , Encefalite/patologia , Expressão Gênica/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Mutantes , Neuroimunomodulação/fisiologia , Óxido Nítrico Sintase Tipo II/genética , Peroxidase/metabolismo , Recuperação de Função Fisiológica , Restrição Física , Transdução de Sinais/imunologia , Estresse Psicológico/complicações , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia , Receptor 4 Toll-Like/genética
20.
Stroke ; 39(4): 1269-75, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18323503

RESUMO

BACKGROUND AND PURPOSE: Excess brain extracellular glutamate induced by cerebral ischemia leads to neuronal death, mainly through overactivation of N-methyl-D-aspartate (NMDA) receptors. The cholesterol-lowering drugs statins have been reported to protect from NMDA-induced neuronal death but, so far, the mechanism underlying this protection remains unclear. Because NMDA receptors have been reported to be associated with the cholesterol-rich membrane domains known as lipid rafts, we have investigated the effect of treatments that deplete cholesterol levels on excitotoxicity and on association of NMDA receptors to lipid rafts. METHODS: Primary neuronal cultures were pretreated with inhibitors of cholesterol synthesis and cholesterol, and NMDA-induced cell death was determined by measuring release of lactate dehydrogenase. Lipid raft fractions were isolated and Western blots were performed. RESULTS: Treatment with the inhibitors of cholesterol synthesis simvastatin, which inhibits the first step of cholesterol synthesis, or AY9944, which inhibits the last step of cholesterol synthesis, protected neurons from NMDA-induced neuronal death by 70% and 54%, respectively. Treatment with these compounds reduced neuronal cholesterol levels by 35% and 13%, respectively. Simvastatin and AY9944 reduced the association of the subunit 1 of NMDA receptors (NMDAR1) to lipid rafts by 42% and 21%, respectively, and did not change total expression of NMDAR1. Addition of cholesterol reduced neuroprotection by statins and AY9944, and partially reverted the effect of simvastatin on the association of NMDAR1 to lipid rafts. CONCLUSIONS: These data demonstrate that reduction of cholesterol levels protects from NMDA-induced neuronal damage probably by reducing the association of NMDA receptors to lipid rafts.


Assuntos
Anticolesterolemiantes/farmacologia , Microdomínios da Membrana/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sinvastatina/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Colesterol/biossíntese , Colesterol/metabolismo , Feminino , Neurônios/citologia , Neurônios/metabolismo , Neurotoxinas/metabolismo , Gravidez , Ratos , Dicloridrato de trans-1,4-Bis(2-clorobenzaminometil)ciclo-hexano/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA