Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Avicenna J Phytomed ; 14(4): 470-484, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952771

RESUMO

Objective: Autophagy, as a cellular pathway involved in removing damaged proteins and organelles, performs a vital function in the homeostasis and fate of cells. Natural compounds of coumarin (CO) are found in a variety of herbs. Due to their many medicinal properties, including antitumor and anti-proliferative activity, they are involved in apoptosis and autophagy processes. This investigation desired to analyze the apoptotic and autophagic effects of p-coumaric acid (PCA) and CO on HT-29 cells cultured in fibrin hydrogel. Materials and Methods: Cell viability and apoptotic and autophagic changes were evaluated by MTT assay, Acridine Orange, 4',6-diamidino-2-phenylindole (DAPI), and monodansylcadaverine (MDC) staining. The expression Bax, Bad, Bcl2, Lc3, Beclin-1, P53 and Atg5 was respectively measured by qRT-PCR and Western blotting. Results: CO (IC50=25 µM) and PCA (IC50=150 µM) had a dose- and time-dependent cytotoxic effect in HT-29 cells. So, the cytotoxic effects of CO were significantly higher than PCA and these differences were also evident in cell morphology investigations. The data illustrated a high expression of pro-apoptotic and pro-autophagic genes and a declined expression of anti-apoptotic and anti-autophagic genes. Conclusion: CO (that was more potent) and p-coumaric acid-induced autophagy via PI3K/Akt/mTOR and AMPK/mTOR signaling on HT-29 cells.

2.
Noncoding RNA Res ; 9(4): 1178-1189, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39022676

RESUMO

As the deadliest type of primary brain tumor, gliomas represent a significant worldwide health concern. Circular RNA (circRNA), a unique non-coding RNA molecule, seems to be one of the most alluring target molecules involved in the pathophysiology of many kinds of cancers. CircRNAs have been identified as prospective targets and biomarkers for the diagnosis and treatment of numerous disorders, particularly malignancies. Recent research has established a clinical link between temozolomide (TMZ) resistance and certain circRNA dysregulations in glioma tumors. CircRNAs may play a therapeutic role in controlling or overcoming TMZ resistance in gliomas and may provide guidance for a novel kind of individualized glioma therapy. To address the biological characteristics of circRNAs and their potential to induce resistance to TMZ, this review has highlighted and summarized the possible roles that circRNAs may play in molecular pathways of drug resistance, including the Ras/Raf/ERK PI3K/Akt signaling pathway and metabolic processes in gliomas.

3.
Noncoding RNA Res ; 9(4): 1159-1177, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39022677

RESUMO

Ferroptosis, a recently identified type of non-apoptotic cell death, triggers the elimination of cells in the presence of lipid peroxidation and in an iron-dependent manner. Indeed, ferroptosis-stimulating factors have the ability of suppressing antioxidant capacity, leading to the accumulation of reactive oxygen species (ROS) and the subsequent oxidative death of the cells. Ferroptosis is involved in the pathophysiological basis of different maladies, such as multiple cancers, among which female-oriented malignancies have attracted much attention in recent years. In this context, it has also been unveiled that non-coding RNA transcripts, including microRNAs, long non-coding RNAs, and circular RNAs have regulatory interconnections with the ferroptotic flux, which controls the pathogenic development of diseases. Furthermore, the potential of employing these RNA transcripts as therapeutic targets during the onset of female-specific neoplasms to modulate ferroptosis has become a research hotspot; however, the molecular mechanisms and functional alterations of ferroptosis still require further investigation. The current review comprehensively highlights ferroptosis and its association with non-coding RNAs with a focus on how this crosstalk affects the pathogenesis of female-oriented malignancies, from breast cancer to ovarian, cervical, and endometrial neoplasms, suggesting novel therapeutic targets to decelerate and even block the expansion and development of these tumors.

4.
Pathol Res Pract ; 260: 155386, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38861919

RESUMO

Breast and lung cancers are leading causes of death among patients, with their global mortality and morbidity rates increasing. Conventional treatments often prove inadequate due to resistance development. The alteration of molecular interactions may accelerate cancer progression and treatment resistance. SOX2, known for its abnormal expression in various human cancers, can either accelerate or impede cancer progression. This review focuses on examining the role of SOX2 in breast and lung cancer development. An imbalance in SOX2 expression can promote the growth and dissemination of these cancers. SOX2 can also block programmed cell death, affecting autophagy and other cell death mechanisms. It plays a significant role in cancer metastasis, mainly by regulating the epithelial-to-mesenchymal transition (EMT). Additionally, an imbalanced SOX2 expression can cause resistance to chemotherapy and radiation therapy in these cancers. Genetic and epigenetic factors may affect SOX2 levels. Pharmacologically targeting SOX2 could improve the effectiveness of breast and lung cancer treatments.

5.
MedComm (2020) ; 5(7): e583, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38919334

RESUMO

Nonviral vectors, such as liposomes, offer potential for targeted gene delivery in cancer therapy. Liposomes, composed of phospholipid vesicles, have demonstrated efficacy as nanocarriers for genetic tools, addressing the limitations of off-targeting and degradation commonly associated with traditional gene therapy approaches. Due to their biocompatibility, stability, and tunable physicochemical properties, they offer potential in overcoming the challenges associated with gene therapy, such as low transfection efficiency and poor stability in biological fluids. Despite these advancements, there remains a gap in understanding the optimal utilization of nanoliposomes for enhanced gene delivery in cancer treatment. This review delves into the present state of nanoliposomes as carriers for genetic tools in cancer therapy, sheds light on their potential to safeguard genetic payloads and facilitate cell internalization alongside the evolution of smart nanocarriers for targeted delivery. The challenges linked to their biocompatibility and the factors that restrict their effectiveness in gene delivery are also discussed along with exploring the potential of nanoliposomes in cancer gene therapy strategies by analyzing recent advancements and offering future directions.

6.
Pathol Res Pract ; 259: 155381, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38833803

RESUMO

Urological cancers, including prostate, bladder, and renal cancers, are significant causes of death and negatively impact the quality of life for patients. The development and progression of these cancers are linked to the dysregulation of molecular pathways. c-Myc, recognized as an oncogene, exhibits abnormal levels in various types of tumors, and current evidence supports the therapeutic targeting of c-Myc in cancer treatment. This review aims to elucidate the role of c-Myc in driving the progression of urological cancers. c-Myc functions to enhance tumorigenesis and has been documented to increase growth and metastasis in prostate, bladder, and renal cancers. Furthermore, the dysregulation of c-Myc can result in a diminished response to therapy in these cancers. Non-coding RNAs, ß-catenin, and XIAP are among the regulators of c-Myc in urological cancers. Targeting and suppressing c-Myc therapeutically for the treatment of these cancers has been explored. Additionally, the expression level of c-Myc may serve as a prognostic factor in clinical settings.


Assuntos
Proteínas Proto-Oncogênicas c-myc , Neoplasias Urológicas , Humanos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Neoplasias Urológicas/patologia , Neoplasias Urológicas/genética , Neoplasias Urológicas/metabolismo , Regulação Neoplásica da Expressão Gênica , Animais
7.
Pathol Res Pract ; 259: 155388, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850846

RESUMO

Extracellular vesicles (EVs) serve as a crucial method for transferring information among cells, which is vital in multicellular organisms. Among these vesicles, exosomes are notable for their small size, ranging from 20 to 150 nm, and their role in cell-to-cell communication. They carry lipids, proteins, and nucleic acids between cells. The creation of exosomes begins with the inward budding of the cell membrane, which then encapsulates various macromolecules as cargo. Once filled, exosomes are released into the extracellular space and taken up by target cells via endocytosis and similar processes. The composition of exosomal cargo varies, encompassing diverse macromolecules with specific functions. Because of their significant roles, exosomes have been isolated from various cell types, including cancer cells, endothelial cells, macrophages, and mesenchymal cells, with the aim of harnessing them for therapeutic applications. Exosomes influence cellular metabolism, and regulate lipid, glucose, and glutamine pathways. Their role in pathogenesis is determined by their cargo, which can manipulate processes such as apoptosis, proliferation, inflammation, migration, and other molecular pathways in recipient cells. Non-coding RNA transcripts, a common type of cargo, play a pivotal role in regulating disease progression. Exosomes are implicated in numerous biological and pathological processes, including inflammation, cancer, cardiovascular diseases, diabetes, wound healing, and ischemic-reperfusion injury. As a result, they hold significant potential in the treatment of both cancerous and non-cancerous conditions.


Assuntos
Comunicação Celular , Exossomos , Exossomos/metabolismo , Humanos , Comunicação Celular/fisiologia , Animais , Neoplasias/patologia , Neoplasias/metabolismo
8.
Mol Metab ; 84: 101952, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705513

RESUMO

BACKGROUND: Solute carrier (SLC) transporters, a diverse family of membrane proteins, are instrumental in orchestrating the intake and efflux of nutrients including amino acids, vitamins, ions, nutrients, etc, across cell membranes. This dynamic process is critical for sustaining the metabolic demands of cancer cells, promoting their survival, proliferation, and adaptation to the tumor microenvironment (TME). Amino acids are fundamental building blocks of cells and play essential roles in protein synthesis, nutrient sensing, and oncogenic signaling pathways. As key transporters of amino acids, SLCs have emerged as crucial players in maintaining cellular amino acid homeostasis, and their dysregulation is implicated in various cancer types. Thus, understanding the intricate connections between amino acids, SLCs, and cancer is pivotal for unraveling novel therapeutic targets and strategies. SCOPE OF REVIEW: In this review, we delve into the significant impact of amino acid carriers of the SLCs family on the growth and progression of cancer and explore the current state of knowledge in this field, shedding light on the molecular mechanisms that underlie these relationships and highlighting potential avenues for future research and clinical interventions. MAJOR CONCLUSIONS: Amino acids transportation by SLCs plays a critical role in tumor progression. However, some studies revealed the tumor suppressor function of SLCs. Although several studies evaluated the function of SLC7A11 and SLC1A5, the role of some SLC proteins in cancer is not studied well. To exert their functions, SLCs mediate metabolic rewiring, regulate the maintenance of redox balance, affect main oncogenic pathways, regulate amino acids bioavailability within the TME, and alter the sensitivity of cancer cells to therapeutics. However, different therapeutic methods that prevent the function of SLCs were able to inhibit tumor progression. This comprehensive review provides insights into a rapidly evolving area of cancer biology by focusing on amino acids and their transporters within the SLC superfamily.


Assuntos
Sistemas de Transporte de Aminoácidos , Aminoácidos , Neoplasias , Humanos , Neoplasias/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Microambiente Tumoral , Proteínas Carreadoras de Solutos/metabolismo , Proteínas Carreadoras de Solutos/genética
9.
Heliyon ; 10(9): e29871, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707342

RESUMO

Diabetes mellitus (DM) is a metabolic illness defined by elevated blood glucose levels, mediating various tissue alterations, including the dysfunction of vital organs. Diabetes mellitus (DM) can lead to many consequences that specifically affect the brain, heart, and kidneys. These issues are known as neuropathy, cardiomyopathy, and nephropathy, respectively. Inflammation is acknowledged as a pivotal biological mechanism that contributes to the development of various diabetes consequences. NF-κB modulates inflammation and the immune system at the cellular level. Its abnormal regulation has been identified in several clinical situations, including cancer, inflammatory bowel illnesses, cardiovascular diseases, and Diabetes Mellitus (DM). The purpose of this review is to evaluate the potential impact of NF-κB on complications associated with DM. Enhanced NF-κB activity promotes inflammation, resulting in cellular harm and compromised organ performance. Phytochemicals, which are therapeutic molecules, can potentially decline the NF-κB level, therefore alleviating inflammation and the progression of problems correlated with DM. More importantly, the regulation of NF-κB can be influenced by various factors, such as TLR4 in DM. Highlighting these factors can facilitate the development of novel therapies in the future.

10.
BMC Infect Dis ; 24(1): 488, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741059

RESUMO

BACKGROUND: Prioritizing prevention over treatment has been a longstanding principle in the world health system. This study aims to compare the demographic changes, mortality, clinical, and paraclinical findings of patients hospitalized in the Corona ward before and after the start of general vaccination. METHODS: This cross-sectional study utilized the simple random sampling method in 2022, analyzing 300 medical records of patients admitted to the Corona ward at 22 Bahman Khaf Hospital. Data were collected using a checklist with the help of the Medical Care Monitoring System and analyzed using SPSS-22 statistical software and Chi-square statistical test at a significance level of p < 0.05. RESULTS: Before the start of general vaccination for COVID-19, the majority of patients were hospitalized in the Corona Intensive Care Unit (59.3%), aged between 51 and 65 years (47.3%), hospitalized for more than 3 days (54%), required intubation (49.3%), had SPO2 < 93% (60.7%), and exhibited common symptoms such as cough, shortness of breath, and loss of consciousness. Paraclinical findings included positive CRP, decreased lymphocytes, and ground glass opacity (GGO). After the start of general vaccination for COVID-19, most patients were hospitalized in the general care department of Corona (68%), aged between 36 and 50 years (47.3%), hospitalized for less than three days (66%), required intubation (20%), had SPO2 ≥ 93% (77.3%), and exhibited common symptoms such as weakness, headache, and body pain. Paraclinical findings were within the normal range. CONCLUSIONS: General vaccination for COVID-19 has significantly reduced patient mortality and morbidity. Health policymakers should prioritize general vaccination to achieve herd immunity and improve public health.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Hospitalização , SARS-CoV-2 , Vacinação , Humanos , COVID-19/mortalidade , COVID-19/prevenção & controle , COVID-19/epidemiologia , Pessoa de Meia-Idade , Masculino , Feminino , Idoso , Estudos Transversais , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Vacinação/estatística & dados numéricos , Hospitalização/estatística & dados numéricos , Adulto , SARS-CoV-2/imunologia , Unidades de Terapia Intensiva/estatística & dados numéricos
11.
Noncoding RNA Res ; 9(2): 508-522, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38511060

RESUMO

The brain tumors and especially glioblastoma, are affecting life of many people worldwide and due to their high mortality and morbidity, their treatment is of importance and has gained attention in recent years. The abnormal expression of genes is commonly observed in GBM and long non-coding RNAs (lncRNAs) have demonstrated dysregulation in this tumor. LncRNAs have length more than 200 nucleotides and they have been located in cytoplasm and nucleus. The current review focuses on the role of lncRNAs in GBM. There two types of lncRNAs in GBM including tumor-promoting and tumor-suppressor lncRNAs and overexpression of oncogenic lncRNAs increases progression of GBM. LncRNAs can regulate proliferation, cell cycle arrest and metastasis of GBM cells. Wnt, STAT3 and EZH2 are among the molecular pathways affected by lncRNAs in GBM and for regulating metastasis of GBM cells, these RNA molecules mainly affect EMT mechanism. LncRNAs are involved in drug resistance and can induce resistance of GBM cells to temozolomide chemotherapy. Furthermore, lncRNAs stimulate radio-resistance in GBM cells. LncRNAs increase PD-1 expression to mediate immune evasion. LncRNAs can be considered as diagnostic and prognostic tools in GBM and researchers have developed signature from lncRNAs in GBM.

12.
Transl Oncol ; 40: 101846, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042134

RESUMO

The treatment of cancer patients has been mainly followed using chemotherapy and it is a gold standard in improving prognosis and survival rate of patients. Oxaliplatin (OXA) is a third-platinum anti-cancer agent that reduces DNA synthesis in cancer cells to interfere with their growth and cell cycle progression. In spite of promising results of using OXA in cancer chemotherapy, the process of drug resistance has made some challenges. OXA is commonly applied in treatment of colorectal cancer (CRC) as a malignancy of gastrointestinal tract and when CRC cells increase their proliferation and metastasis, they can obtain resistance to OXA chemotherapy. A number of molecular factors such as CHK2, SIRT1, c-Myc, LATS2 and FOXC1 have been considered as regulators of OXA response in CRC cells. The non-coding RNAs are able to function as master regulator of other molecular pathways in modulating OXA resistance. There is a close association between molecular mechanisms such as apoptosis, autophagy, glycolysis and EMT with OXA resistance, so that apoptosis inhibition, pro-survival autophagy induction and stimulation of EMT and glycolysis can induce OXA resistance in CRC cells. A number of anti-tumor compounds including astragaloside IV, resveratrol and nobiletin are able to enhance OXA sensitivity in CRC cells. Nanoparticles for increasing potential of OXA in CRC suppression and reversing OXA resistance have been employed in cancer chemotherapy. These subjects are covered in this review article to shed light on molecular factors resulting in OXA resistance.

13.
Transl Oncol ; 39: 101838, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38016356

RESUMO

As a clinically approved treatment strategy, chemotherapy-mediated tumor suppression has been compromised, and in spite of introducing various kinds of anticancer drugs, cancer eradication with chemotherapy is still impossible. Chemotherapy drugs have been beneficial in improving the prognosis of cancer patients, but after resistance emerged, their potential disappeared. Oxaliplatin (OXA) efficacy in tumor suppression has been compromised by resistance. Due to the dysregulation of pathways and mechanisms in OXA resistance, it is suggested to develop novel strategies for overcoming drug resistance. The targeted delivery of OXA by nanostructures is described here. The targeted delivery of OXA in cancer can be mediated by polymeric, metal, lipid and carbon nanostructures. The advantageous of these nanocarriers is that they enhance the accumulation of OXA in tumor and promote its cytotoxicity. Moreover, (nano)platforms mediate the co-delivery of OXA with drugs and genes in synergistic cancer therapy, overcoming OXA resistance and improving insights in cancer patient treatment in the future. Moreover, smart nanostructures, including pH-, redox-, light-, and thermo-sensitive nanostructures, have been designed for OXA delivery and cancer therapy. The application of nanoparticle-mediated phototherapy can increase OXA's potential in cancer suppression. All of these subjects and their clinical implications are discussed in the current review.

14.
J Trace Elem Med Biol ; 81: 127320, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37913559

RESUMO

BACKGROUND: Infertility is one of the major factors affecting most people around the world. Short-term exposure to high temperatures can cause hyperthermia, which is one of the causes of male infertility. The aim of this study was to investigate the protective effect of curcumin, vitamins D and E along with Iron (III) oxide nanoparticles (Fe2O3-NPs) and manganese oxide nanoparticles (MnO2-NPs) on semen parameters and its effect on miRNA21 and circRNA0001518 expression. MATERIAL AND METHODS: In this study, the lower part of the rat was exposed to 43 °C for 5 weeks every other day for 5 weeks. Then the animals were killed. Tissue samples were collected for sperm parameters analysis, and tissue samples were taken for evaluation of apoptosis levels in germ cells, and RNA extraction in order to examine the expression of Bax, Bcl-2, miRNA, and CircRNA genes. RESULTS: The results of this study showed that administration of curcumin, vitamin D, and vitamin E with Fe2O3-NPs and MnO2-NPs can improve the parameters of semen, Bax gene expression, Bcl-2 as well as miRNA and CircRNA in rats with testicular hyperthermia. In addition, curcumin by reducing the toxicity of Fe2O3 nanoparticles was able to reduce its negative effects and also reduce apoptosis in germ cells. This decrease in apoptosis was attributed to decreased Bcl-2 gene expression and increased expression of Bax, miRNA-21, and circRNA0001518. CONCLUSION: All the results of this study confirmed that Fe2O3-NPs and Mno2-NPs containing antioxidants or vitamins are useful in improving fertility in rats due to scrotal hyperthermia. Although Fe2O3-NPs and Mno2-NPs containing both antioxidants and vitamins had a greater effect on improving fertility and reducing the toxic effects of nanoparticles.


Assuntos
Curcumina , Hipertermia Induzida , Nanopartículas Metálicas , MicroRNAs , Nanopartículas , Humanos , Ratos , Masculino , Animais , Vitamina D , Compostos de Manganês , Óxidos/toxicidade , Curcumina/farmacologia , RNA Circular , Ferro , MicroRNAs/genética , Proteína X Associada a bcl-2 , Nanopartículas Metálicas/toxicidade , Sêmen , Antioxidantes , Vitaminas
15.
Cancers (Basel) ; 15(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37958442

RESUMO

Rhabdomyosarcoma is a rare cancer arising in skeletal muscle that typically impacts children and young adults. It is a worldwide challenge in child health as treatment outcomes for metastatic and recurrent disease still pose a major concern for both basic and clinical scientists. The treatment strategies for rhabdomyosarcoma include multi-agent chemotherapies after surgical resection with or without ionization radiotherapy. In this comprehensive review, we first provide a detailed clinical understanding of rhabdomyosarcoma including its classification and subtypes, diagnosis, and treatment strategies. Later, we focus on chemotherapy strategies for this childhood sarcoma and discuss the impact of three mechanisms that are involved in the chemotherapy response including apoptosis, macro-autophagy, and the unfolded protein response. Finally, we discuss in vivo mouse and zebrafish models and in vitro three-dimensional bioengineering models of rhabdomyosarcoma to screen future therapeutic approaches and promote muscle regeneration.

16.
Pathol Res Pract ; 251: 154902, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37922723

RESUMO

Osteosarcoma (OS) is a malignant bone carcinoma that affects people in childhood and adulthood. The heterogeneous nature and chromosomal instability represent certain characteristics of OS cells. These cancer cells grow and migrate abnormally, making the prognosis undesirable for patients. Conventional and current treatments fail to completely eradicate tumor cells, so new therapeutics targeting genes may be considered. PI3K/Akt is a regulator of events such as growth, cell death, migration, and differentiation, and its expression changes during cancer progression. PTEN reduces PI3K/Akt expression, and its mutations and depletions have been reported in various tumors. Experimental evidence shows that there is upregulation of PI3K/Akt and downregulation of PTEN in OS. Increasing PTEN expression may suppress PI3K/Akt to minimize tumorigenesis. In addition, PI3K/Akt shows a positive association with growth, metastasis, EMT and metabolism of OS cells and inhibits apoptosis. Importantly, overexpression of PI3K/Akt causes drug resistance and radio-resistance and its level can be modulated by miRNAs, lncRNAs and circRNAs. Silencing PI3K/Akt by compounds and drugs can suppress OS. Here, we review in detail the function of the PTEN/PI3K/Akt in OS, revealing its biological function, function in tumor progression, resistance to therapy, and pharmacological significance.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Carcinogênese , Osteossarcoma/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proliferação de Células/genética
17.
Environ Res ; 239(Pt 1): 117117, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37805185

RESUMO

INTRODUCTION: Colorectal cancer (CRC) is one of the most malignant tumors and in which various efforts for screening is inconclusive.The intracrine FGF panel, the non-tyrosine kinase receptors (NTKR) FGFs and affiliated antisenses play a pivotal role in FGF signaling.The expression levels of coding and non-coding intracrine FGFs were assessed in CRC donors.Also, substantial costs and slow pace of drug discovery give high attraction to repurpose of previously discovered drugs to new opportunities. OBJECTIVES: The aim of present study was to evaluate the potential role of the coding and non-coding intracrine FGFs as a new biomarkers for CRC cases and defining drug repurposing to alleviate FGF down regulation. METHODS: RNA-seq data of colon adenocarcinomas (COAD) was downloaded using TCGA biolinks package in R.The DrugBank database (https://go.drugbank.com/) was used to extract interactions between drugs and candidate genes. A total of 200 CRC patients with detailed criteria were enrolled.RNAs were extracted with TRIzol-based protocol and amplified via LightCycler® instrument.FGF11 and FGF13 proteins validation was performed by used of immunohistochemistry technique in tumor and non-tumoral samples.Pearson's correlation analysis and ROC curve plotted by Prism 8.0 software. RESULTS: RNA-seq data from TCGA was analyzed by normalizing with edgeR.Differentially expressed gene (DEG) analysis was generated. WCC algorithm extracted the most significant genes with a total of 47 genes. Expression elevation of iFGF antisenses (12AS,13As,14AS) compared with the normal colon tissue were observed (P = 0.0003,P = 0.042,P = 0.026, respectively). Moreover,a significant decrease in expression of the corresponding sense iFGF genes was detected (P < 0.0001).Plotted receiver operating characteristic (ROC) curves for iFGF components' expression showed an area of over 0.70 (FGF11-13: 0.71% and FGF12-14: 0.78%, P < 0.001) for sense mRNA expression, with the highest sensitivity for FGF12 (92.8%) and lowest for FGF11 (61.41%).The artificial intelligence (AI) revealed the valproic acid as a repurposing drug to relief the down regulation of FGF12 and 13 in CRC patients. CONCLUSION: Intracrine FGFs panel was down regulated versus up regulation of dependent antisenses. Thus, developing novel biomarkers based on iFGF can be considered as a promising strategy for CRC screening.In advanced, valporic acid detected by AI as a repurposing drug which may be applied in clinical trials for CRC treatment.


Assuntos
Nanopartículas , Neoplasias , Humanos , Inteligência Artificial , Reposicionamento de Medicamentos , Algoritmos , Biomarcadores , Nanopartículas/uso terapêutico , Fatores de Crescimento de Fibroblastos/genética
18.
Environ Res ; 237(Pt 2): 117027, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659647

RESUMO

The latest advancements in oncology involves the creation of multifunctional nanostructures. The integration of nanoparticles into the realm of cancer therapy has brought about a transformative shift, revolutionizing the approach to addressing existing challenges and limitations in tumor elimination. This is particularly crucial in combating the emergence of resistance, which has significantly undermined the effectiveness of treatments like chemotherapy and radiotherapy. GO stands as a carbon-derived nanoparticle that is increasingly finding utility across diverse domains, notably in the realm of biomedicine. The utilization of GO nanostructures holds promise in the arena of oncology, enabling precise transportation of drugs and genetic material to targeted sites. GO nanomaterials offer the opportunity to enhance the pharmacokinetic behavior and bioavailability of drugs, with documented instances of these nanocarriers elevating drug accumulation at the tumor location. The GO nanostructures encapsulate genes, shielding them from degradation and facilitating their uptake within cancer cells, thereby promoting efficient gene silencing. The capability of GO to facilitate phototherapy has led to notable advancements in reducing tumor progression. By PDT and PTT combination, GO nanomaterials hold the capacity to diminish tumorigenesis. GO nanomaterials have the potential to trigger both cellular and innate immunity, making them promising contenders for vaccine development. Additionally, types of GO nanoparticles that respond to specific stimuli have been applied in cancer eradication, as well as for the purpose of cancer detection and biomarker diagnosis. Endocytosis serves as the mechanism through which GO nanomaterials are internalized. Given these advantages, the utilization of GO nanomaterials for tumor elimination comes highly recommended.

19.
Environ Res ; 238(Pt 1): 117087, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37716390

RESUMO

Hydrogels represent intricate three-dimensional polymeric structures, renowned for their compatibility with living systems and their ability to naturally degrade. These networks stand as promising and viable foundations for a range of biomedical uses. The practical feasibility of employing hydrogels in clinical trials has been well-demonstrated. Among the prevalent biomedical uses of hydrogels, a significant application arises in the context of wound healing. This intricate progression involves distinct phases of inflammation, proliferation, and remodeling, often triggered by trauma, skin injuries, and various diseases. Metabolic conditions like diabetes have the potential to give rise to persistent wounds, leading to delayed healing processes. This current review consolidates a collection of experiments focused on the utilization of hydrogels to expedite the recovery of wounds. Hydrogels have the capacity to improve the inflammatory conditions at the wound site, and they achieve this by diminishing levels of reactive oxygen species (ROS), thereby exhibiting antioxidant effects. Hydrogels have the potential to enhance the growth of fibroblasts and keratinocytes at the wound site. They also possess the capability to inhibit both Gram-positive and Gram-negative bacteria, effectively managing wounds infected by drug-resistant bacteria. Hydrogels can trigger angiogenesis and neovascularization processes, while also promoting the M2 polarization of macrophages, which in turn mitigates inflammation at the wound site. Intelligent and versatile hydrogels, encompassing features such as pH sensitivity, reactivity to reactive oxygen species (ROS), and responsiveness to light and temperature, have proven advantageous in expediting wound healing. Furthermore, hydrogels synthesized using environmentally friendly methods, characterized by high levels of biocompatibility and biodegradability, hold the potential for enhancing the wound healing process. Hydrogels can facilitate the controlled discharge of bioactive substances. More recently, there has been progress in the creation of conductive hydrogels, which, when subjected to electrical stimulation, contribute to the enhancement of wound healing. Diabetes mellitus, a metabolic disorder, leads to a slowdown in the wound healing process, often resulting in the formation of persistent wounds. Hydrogels have the capability to expedite the healing of diabetic wounds, facilitating the transition from the inflammatory phase to the proliferative stage. The current review sheds light on the biological functionalities of hydrogels, encompassing their role in modulating diverse mechanisms and cell types, including inflammation, oxidative stress, macrophages, and bacteriology. Additionally, this review emphasizes the significance of smart hydrogels with responsiveness to external stimuli, as well as conductive hydrogels for promoting wound healing. Lastly, the discussion delves into the advancement of environmentally friendly hydrogels with high biocompatibility, aimed at accelerating the wound healing process.


Assuntos
Diabetes Mellitus , Hidrogéis , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Espécies Reativas de Oxigênio , Antibacterianos/farmacologia , Medicina de Precisão , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Cicatrização , Inflamação
20.
Mol Cell Probes ; 71: 101930, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37690573

RESUMO

BACKGROUND: Breast cancer (BC) has been identified as a significant contributor to the rising number of female cancer deaths. As, it has become clear that breast cancer development depends on the interplay of several biological factors against a single molecule. This research aimed to use proteomics to gain a regulatory and metabolic understanding of BC pathophysiology. METHOD: For the study, a breast cancer proteomics dataset was downloaded from ProteomeXchange and then analyzed by employing MaxQuant and Perseus. Functional enrichment analysis through Metascape and Cytoscape software showed DEPs related biomedical phenomena with potential abruption. The expression of selected lncRNA in terms of the highest connectivity parameters was then quantitatively assessed through RT-PCR in 30 tumor tissues of breast cancer patients, as compared to the adjacent healthy ones. RESULT: The results indicated that among the 3048 identified proteins, 1149 were differentially expressed, which could be mainly enriched in several key terms. Furthermore, the obtained findings revealed that ITGB1-DT was significantly overexpressed in tumor tissues. Moreover, we found five potential compounds that could be attributed to ITGB1-DT targets (ATN-161, Firategrast, SB-683698, dabigatran-etexilate, and tranexamic-acid). CONCLUSION: These analyses proposed that ITGB1-DT could be employed as a differentiated factor to identify breast tumor tissues in healthy samples. Besides this, Firategrast could be introduced as a potential remedial agent for breast cancer patients. Overall, from the analysis of a proteomics dataset, an integrative map was generated, and a novel biomarker that may have been implicated in the early detection of BC was introduced.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteômica , Biomarcadores , Biologia Computacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA