Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 25579, 2024 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-39461997

RESUMO

High solid anaerobic digestion has proved the mainstream technology for the treatment of organic wastes. However, the high molecular weight and complex lignocellulosic structure of cow manure (CM) make it indigestible and inefficient, leading to limit the hydrolysis step of anaerobic digestion at high solid content. To mitigate this bottleneck, an improved cost-effective freezing and thawing pretreatment technique was proposed in this study. The freezing and thawing pretreatment of raw CM without any dilution was done for 20 days. The maximum cumulative methane yield (487 mL CH4 g- 1VS) was achieved at a total solid (TS) of 5% followed by TS of 10% and 15%, which was 13%, 20% and 21% higher than obtained from untreated CM, respectively. The kinetic results revealed that the biodegradable materials could be utilized at increasing TS with decreasing hydrolysis rate. The pretreatment significantly enhanced the methylotrophic methanogenic pathway during high solid anaerobic digestion, which was contrary to the general concept that the process is usually dominated by acetoclastic and hydrogenotrophic methanogens. This study is very important to understand the effect of solid content but also important to understand the effect of freezing and thawing pretreatment on process parameters and microbial community dynamics in high solid anaerobic digestion.


Assuntos
Congelamento , Esterco , Metano , Esterco/microbiologia , Bovinos , Animais , Anaerobiose , Metano/metabolismo , Cinética , Microbiota
2.
Sci Rep ; 13(1): 6878, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37106013

RESUMO

Due to the lack of farm-gate milk processing facilities, dairy farmers have to sell raw milk, resulting in economic and quality compromises. The study compared the quality of yogurt processed in solar assisted yogurt processing unit with the existing milk value chain and its techno-economic feasibility. For this, an investigation of the experiment was executed where four different milk processing approaches were compared. The quality attributes for processed milk like fat (5.283%), solid-not-fat (9.0833%), salts (0.6833%), protein (3.8%), lactose (4.1%), total solids (14.383%), pH (6.87), density (1.031 kg/L) and freezing point (- 0.532 °C) were found within the standardized ranges. Similarly, for the case of yogurt, these attributes were found as fat (5.5%), solid-not-fat (8.683%), acidity (0.93%), lactose (4.73%), total solids (14.183%), pH (4.3433), density (1.039 kg/L) syneresis (9.87 mL/100 g), S. thermophilus count range (10.18-10.30 log cfu/mL) and L. bulgaricus count range (10.26-10.34 log cfu/mL). Moreover, no detection of coliform count in solar-processed yogurt, endorsed the current idea to perform three processes of heating, fermentation, and cooling in a single unit. Based on the energy sources utilized, the payback period was calculated to be 1.3-9 years with an expected lifespan of 15 years while in terms of product profit, the payback period was predicted to be 1.78 years. The processing cost per liter of milk for yogurt production was calculated to be 0.0189 USD. Considering CO2 emission savings, it is anticipated that a solar-powered yogurt processing unit can generate 107.73 MWh of useful energy during its operating life with zero CO2 emission.


Assuntos
Dióxido de Carbono , Iogurte , Animais , Estudos de Viabilidade , Lactose , Leite , Fermentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA