Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Front Oncol ; 14: 1343627, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571502

RESUMO

Background: Breast cancer is the leading cause of cancer-related fatalities among women worldwide. Conventional screening and risk prediction models primarily rely on demographic and patient clinical history to devise policies and estimate likelihood. However, recent advancements in artificial intelligence (AI) techniques, particularly deep learning (DL), have shown promise in the development of personalized risk models. These models leverage individual patient information obtained from medical imaging and associated reports. In this systematic review, we thoroughly investigated the existing literature on the application of DL to digital mammography, radiomics, genomics, and clinical information for breast cancer risk assessment. We critically analyzed these studies and discussed their findings, highlighting the promising prospects of DL techniques for breast cancer risk prediction. Additionally, we explored ongoing research initiatives and potential future applications of AI-driven approaches to further improve breast cancer risk prediction, thereby facilitating more effective screening and personalized risk management strategies. Objective and methods: This study presents a comprehensive overview of imaging and non-imaging features used in breast cancer risk prediction using traditional and AI models. The features reviewed in this study included imaging, radiomics, genomics, and clinical features. Furthermore, this survey systematically presented DL methods developed for breast cancer risk prediction, aiming to be useful for both beginners and advanced-level researchers. Results: A total of 600 articles were identified, 20 of which met the set criteria and were selected. Parallel benchmarking of DL models, along with natural language processing (NLP) applied to imaging and non-imaging features, could allow clinicians and researchers to gain greater awareness as they consider the clinical deployment or development of new models. This review provides a comprehensive guide for understanding the current status of breast cancer risk assessment using AI. Conclusion: This study offers investigators a different perspective on the use of AI for breast cancer risk prediction, incorporating numerous imaging and non-imaging features.

2.
Cureus ; 16(2): e55291, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38558614

RESUMO

Background The adoption of same-day discharge (SDD) in elective percutaneous coronary intervention (PCI) procedures offers potential benefits in terms of patient satisfaction and reduced healthcare costs. Despite these advantages, the safety and efficacy of SDD, especially among patients with diverse health profiles, are not fully understood. This study investigates the effects of patient-specific factors, including age, comorbidities, and discharge timing, on the clinical outcomes of elective PCI, focusing on the viability of SDD. Methods A prospective study was carried out at Lady Reading Hospital, Peshawar, Pakistan, involving 220 patients undergoing elective PCI from January to June 2023. This research compared the clinical outcomes of patients discharged on the same day with those who had extended hospital stays, examining the impact of age, comorbidities, and PCI success. Main outcome measures included post-procedure complications and hospital readmissions within 30 days. Results The study enrolled participants with an average age of 62 years, the majority (88%, n=194/220) of whom had comorbidities. Interestingly, 16% (n=35/220) of the participants were discharged on the same day, while the rest stayed longer in the hospital. Notably, those in the SDD group experienced significantly more complications and readmissions, with 95.14% (n=33/36) compared to only 16.22% (n=30/184) in their counterparts. Factors such as age, comorbidities, success of PCI, timing of discharge, and patient satisfaction emerged as significant predictors of the observed outcomes. Conclusion This study highlights the essential role of personalized care in discharge planning following elective PCI, advocating for a cautious approach towards SDD, especially for older patients and those with multiple health issues.

3.
J Neurosci Res ; 102(4): e25332, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38646942

RESUMO

The coordinated action of multiple leg joints and muscles is required even for the simplest movements. Understanding the neuronal circuits and mechanisms that generate precise movements is essential for comprehending the neuronal basis of the locomotion and to infer the neuronal mechanisms underlying several locomotor-related diseases. Drosophila melanogaster provides an excellent model system for investigating the neuronal circuits underlying motor behaviors due to its simple nervous system and genetic accessibility. This review discusses current genetic methods for studying locomotor circuits and their function in adult Drosophila. We highlight recently identified neuronal pathways that modulate distinct forward and backward locomotion and describe the underlying neuronal control of leg swing and stance phases in freely moving flies. We also report various automated leg tracking methods to measure leg motion parameters and define inter-leg coordination, gait and locomotor speed of freely moving adult flies. Finally, we emphasize the role of leg proprioceptive signals to central motor circuits in leg coordination. Together, this review highlights the utility of adult Drosophila as a model to uncover underlying motor circuitry and the functional organization of the leg motor system that governs correct movement.


Assuntos
Locomoção , Animais , Locomoção/fisiologia , Neurônios/fisiologia , Drosophila melanogaster/fisiologia , Drosophila/fisiologia
4.
Cureus ; 16(2): e53493, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38440007

RESUMO

Background Contrast-induced nephropathy (CIN) significantly complicates percutaneous coronary intervention (PCI), with a higher prevalence in diabetic patients. This study compares the incidence of CIN in diabetic and non-diabetic patients undergoing PCI. Material and methods Conducted at Lady Reading Hospital, Peshawar, PAK, from January to December 2023, this observational study involved 450 adult patients with coronary artery disease (CAD) undergoing PCI. The cohort was categorized based on diabetes status, excluding patients with chronic kidney disease and those on renal replacement therapy. Baseline characteristics documented included age, gender, blood pressure, creatinine levels, and the presence of acute coronary syndrome (ACS). CIN was defined as a ≥25% increase in serum creatinine from baseline within 48-72 hours post-PCI. Data analysis was performed using the Statistical Package for the Social Sciences (IBM SPSS Statistics for Windows, IBM Corp., Version 25.0, Armonk, NY), incorporating descriptive statistics, Chi-square tests, and independent t-tests, with a significance level of p<0.05. Results The median age of the study population was 55 years. The cohort comprised 52% male (n=234) and 48% female (n=216). Notably, 33% (n=149) had ACS. Diabetic patients exhibited a significantly higher incidence of CIN post-PCI compared to non-diabetics. The highest incidence of CIN (17%, n=77) occurred in the 70+ age group. The findings highlight the criticality of renal function monitoring and procedural adjustments for diabetic patients. Conclusion Diabetic patients demonstrate an increased risk of CIN following PCI. This necessitates the development of tailored prevention strategies for this high-risk subgroup.

5.
J Environ Manage ; 353: 120090, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38301480

RESUMO

Monoculture is widely practiced to increase crop productivity, but long-term adaptation has drawbacks as it increases the depletion of soil nutrients and reduces soil quality, especially in dryland areas. Conversion from traditional maize monoculture to intercropping improves sustainable production. However, maize/peanut intercropping, especially rotation of planting strips impacts of maize/peanut intercropping in dryland on carbon (C) budgets and economic benefits remain unclear. In this study, a 5-year field experiment was conducted to evaluate the influence of maize/peanut intercropping with rotation of planting strips on soil health, indirect CO2-eq greenhouse gas emissions, and ecosystem C inputs. Four intercropping treatments viz. maize monoculture, peanut monoculture, maize/peanut intercropping, and maize/peanut rotation-intercropping were tested from 2018 to 2022. Maize/peanut rotation intercropping significantly improved the land equivalent ratio followed by intercropping and monoculture. Rotation-intercropping also improved economic benefits over intercropping and monoculture which were mainly associated with increased peanut yield where the border rows contributed the maximum, followed by the middle rows. Moreover, rotation-intercropping significantly increased the soil organic C and nitrogen (N) content. Rotation-intercropping decreased indirect CO2-eq greenhouse gas emissions and ecosystem C inputs by 3.11% and 18.04%, whereas increased ecosystem C outputs and net ecosystem C budget by 10.38% and 29.14%, respectively, over the average of monoculture. On average for intercropping and monoculture, rotation-intercropping increased ecosystem C emission efficiency for economic benefits by 51.94% and 227.27% in 2021 and 2022, respectively, showing the highest C utilization efficiency than other treatments. In the long run, maize/peanut rotation-intercropping can be practiced in dryland agriculture to achieve sustainable agriculture goals.


Assuntos
Ecossistema , Gases de Efeito Estufa , Arachis , Zea mays , Dióxido de Carbono , Agricultura , Solo , China
6.
ACS Omega ; 9(2): 2123-2133, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38250403

RESUMO

BACKGROUND: Wheat, an important cereal crop, is commonly cultivated in arid and semiarid areas, and therefore, it often experiences water deficit conditions. The consequences of induced stress on wheat can be mitigated through vermicompost amendments. To address drought stress on wheat seedlings, a pot experiment was conducted in the wire-house in which two contrasting wheat cultivars, Faisalabad-08 (drought-tolerant) and Galaxy-13 (drought-sensitive), were exposed to three water level conditions: well-watered [D0, 70% of field capacity (FC)], moderate drought (D1, 45% FC), and severe drought (D2, 30% FC). Four rates of vermicompost, derived from cow dung enriched with cellulolytic microbes, were applied (VT0, control; VT1, 4 t ha-1; VT2, 6 t ha-1; and VT3, 8 t ha-1) to the experiment. Data on various physiological, biochemical, and enzymatic antioxidants were recorded. RESULTS: Our results demonstrated that the drought treatments significantly reduced nutrient accumulation, chlorophyll and SPAD values, and carotenoid content in both cultivars where the maximum reduction was recorded for severe drought stress. Nonetheless, the application of vermicompost significantly improved these traits, and statistically maximum chlorophyll contents, SPAD value, and total carotenoid contents were observed for VT1 in both cultivars under drought treatments. While the lowest chlorophyll and carotenoid contents were recorded for untreated replicated pots. Among the cultivars, Faisalabad-08 exhibited greater resistance to drought, as evidenced by higher values of the aforementioned traits compared to Galaxy-13. Soil-applied vermicompost also showed a positive influence on antioxidant enzyme activities in both wheat cultivars grown under well-watered as well as water-scarce conditions. CONCLUSIONS: The findings of this study revealed that drought conditions substantially decreased the enzymatic antioxidants and physiological and biochemical attributes of the wheat crop. However, soil-applied vermicompost, particularly at an optimum rate, had a positive impact on the wheat seedlings under drought conditions. Moving forward, exploring the potential of utilizing cellulolytic microbe-enriched cow dung vermicompost stands as a promising avenue to mitigate the detrimental effects of water stress on wheat. Further research in this direction could offer substantial insights into enhancing wheat resilience and productivity under water stress conditions.

7.
Sci Rep ; 14(1): 1625, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238388

RESUMO

Water stress is an important factor that substantially impacts crop production. As a result, there is a need for various strategies that can mitigate these negative effects. One such strategy is the application of potassium humate (Kh) and cobalt (Co), which have been reported to enhance the resistance of crop plants. Therefore, the present experiment was designed to investigate whether the application of Kh and Co could positively affect proline, chlorophyll and mineral elements contents, and antioxidant defense systems which in turn will mitigate the negative impact of water stress under different irrigation strategies. In 2021 and 2022, an open-field experiments were conducted by using a split-plot design. The main plots were divided to represent different irrigation strategies (ST), with additional control of full irrigation requirements (ST1). Four STs were implemented, with ST1, followed by the application of 75%, 50%, and 25% irrigation strategies in ST2, ST3, and ST4 respectively, in the next irrigation, followed by the full requirements, and so on. In the subplots, peanut plants were treated with tap water (Control), Kh at 2 g l-1 and 3 g l-1, Co, Co + Kh 2 g l-1 and Co + Kh 3 g l-1. The yield was negatively affected by the implementation of ST4, despite the increase in proline contents. Furthermore, there was a decrease in relative water content, chlorophyll content, antioxidant enzymes, protein, and mineral nutrient elements. However, the application of Kh or Co showed better improvements in most of the studied parameters. It is worth noting that there was an antagonistic relationship between Co and iron/manganese, and the intensity of this relationship was found to depend on the STs implemented. The highest mineral nutrient accumulation, chlorophyll content, relative water content, protein content, oil content, seed yield, and water productivity were observed when peanut plants were treated with Kh 3 g l-1 + Co under the ST2 water strategy.


Assuntos
Antioxidantes , Arachis , Antioxidantes/metabolismo , Arachis/metabolismo , Potássio/metabolismo , Desidratação , Cobalto , Prolina/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1 , Minerais , Clorofila/metabolismo , Homeostase , Nutrientes
8.
Plant Physiol Biochem ; 206: 108166, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039586

RESUMO

Extensive chromium (Cr) release into water and soil severely impairs crop productivity worldwide. Nanoparticle (NP) technology has shown potential for reducing heavy metal toxicity and improving plant physicochemical profiles. Herein, we investigated the effects of exogenous zinc oxide NPs (ZnO-NPs) on alleviating Cr stress in Cr-sensitive and tolerant chickpea genotypes. Hydroponically grown chickpea plants were exposed to Cr stress (0 and 120 µM) and ZnO-NPs (25 µM, 20 nm size) twice at a 7-day interval. Cr exposure reduced physiochemical profiles, ion content, cell viability, and gas exchange parameters, and it increased organic acid exudate accumulation in roots and the Cr content in the roots and leaves of the plants. However, ZnO-NP application significantly increased plant growth, enzymatic activities, proline, total soluble sugar, and protein and gas exchange parameters and reduced malondialdehyde and hydrogen peroxide levels, Cr content in roots, and organic acid presence to improve root cell viability. This study provides new insights into the role of ZnO-NPs in reducing oxidative stress along with Cr accumulation and mobility due to low levels of organic acids in chickpea roots. Notably, the Cr-tolerant genotype exhibited more pronounced alleviation of Cr stress by ZnO-NPs. These findings highlight the potential of ZnO-NP in regulating plant growth, reducing Cr accumulation, and promoting sustainable agricultural development.


Assuntos
Cicer , Nanopartículas , Poluentes do Solo , Óxido de Zinco , Cromo/toxicidade , Óxido de Zinco/farmacologia , Cicer/metabolismo , Estresse Oxidativo , Antioxidantes/metabolismo , Nanopartículas/química , Raízes de Plantas/metabolismo , Poluentes do Solo/toxicidade
9.
BMC Bioinformatics ; 24(1): 401, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884877

RESUMO

BACKGROUND: Recent advancements in computing power and state-of-the-art algorithms have helped in more accessible and accurate diagnosis of numerous diseases. In addition, the development of de novo areas in imaging science, such as radiomics and radiogenomics, have been adding more to personalize healthcare to stratify patients better. These techniques associate imaging phenotypes with the related disease genes. Various imaging modalities have been used for years to diagnose breast cancer. Nonetheless, digital breast tomosynthesis (DBT), a state-of-the-art technique, has produced promising results comparatively. DBT, a 3D mammography, is replacing conventional 2D mammography rapidly. This technological advancement is key to AI algorithms for accurately interpreting medical images. OBJECTIVE AND METHODS: This paper presents a comprehensive review of deep learning (DL), radiomics and radiogenomics in breast image analysis. This review focuses on DBT, its extracted synthetic mammography (SM), and full-field digital mammography (FFDM). Furthermore, this survey provides systematic knowledge about DL, radiomics, and radiogenomics for beginners and advanced-level researchers. RESULTS: A total of 500 articles were identified, with 30 studies included as the set criteria. Parallel benchmarking of radiomics, radiogenomics, and DL models applied to the DBT images could allow clinicians and researchers alike to have greater awareness as they consider clinical deployment or development of new models. This review provides a comprehensive guide to understanding the current state of early breast cancer detection using DBT images. CONCLUSION: Using this survey, investigators with various backgrounds can easily seek interdisciplinary science and new DL, radiomics, and radiogenomics directions towards DBT.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Humanos , Feminino , Intensificação de Imagem Radiográfica/métodos , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Mamografia/métodos
10.
Plants (Basel) ; 12(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37895990

RESUMO

The imbalanced use of fertilizers and irrigation water, particularly supplied from groundwater, has adversely affected crop yield and harvest quality in sugarcane (Saccharum officinarum L.). In this experiment, we evaluated the impact of potassium (K) and micronutrients [viz. Zinc (Zn), Iron (Fe), and Boron (B)] application and irrigation water from two sources, viz. canal, and tube well water on sugarcane growth, yield, and cane quality under field trails. Water samples from Mardan (canal water) and Rahim Yar Khan (tube well water) were analyzed for chemical and nutritional attributes. The results revealed that tube well water's electrical conductivity (EC) was three-fold that of canal water. Based on the EC and total dissolved salts (TDS), 83.33% of the samples were suitable for irrigation, while the sodium adsorption ratio (SAR) indicated only a 4.76% fit and a 35.71% marginal fit compared with canal water. Furthermore, the application of K along with B, Fe, and Zn had led to a significant increase in cane height (12.8%, 9.8%, and 10.6%), cane girth (15.8%, 15.6%, and 11.6%), cane yield (13.7%, 12.3%, and 11.5%), brix contents (14%, 12.2%, and 13%), polarity (15.4%, 1.4%, and 14%), and sugar recovery (7.3%, 5.9%, and 6%) in the tube well irrigation system. For the canal water system, B, Fe, and Zn increased cane height by 15.3%, 13.42%, and 11.6%, cane girth by 13.9%, 9.9%, and 6.5%, cane yield by 42.9%, 43.5%, and 42%, brix content by 10.9%, 7.7%, and 8%, polarity by 33.4%, 28%, and 30%, and sugar recovery by 4.0%, 3.9%, and 2.0%, respectively, compared with sole NPK application. In conclusion, the utilization of tube well water in combination with canal water has shown better results in terms of yield and quality compared with the sole application of canal water. In addition, the combined application of K and B significantly improved sugarcane yields compared with Zn and Fe, even with marginally suitable irrigation water.

11.
Sci Rep ; 13(1): 13688, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608147

RESUMO

Drought is a most prevalent environmental stress affecting the productivity of rainfed wheat and maize in the semiarid Loess Plateau of China. Sustainable agricultural practices such as intercropping are important for enhancing crop performance in terms of better physiological and biochemical characteristics under drought conditions. Enzymatic and non-enzymatic antioxidant enzyme activities are associated with improved abiotic tolerance in crop plants, however, its molecular mechanism remains obscure. A 2-year field study was conducted to evaluate the influence of intercropping treatment viz. wheat mono-crop (WMC), maize mono-crop (MMC), intercropping maize (IM) and wheat (IW) crops, and nitrogen (N) application rates viz. control and full-dose of N (basal application at 150 and 235 kg ha-1 for wheat and maize, respectively) on chlorophyll fluorescence, gas exchange traits, lipid peroxidation, antioxidative properties and expression patterns of six tolerance genes in both crops under rainfed conditions. As compared with their respective monocropping treatments, IW and IM increased the Fo/Fm by 18.35 and 14.33%, PS-11 efficiency by 7.90 and 13.44%, photosynthesis by 14.31 and 23.97%, C-capacity by 32.05 and 12.92%, and stomatal conductance by 41.40 and 89.95% under without- and with-N application, respectively. The reductions in instantaneous- and intrinsic-water use efficiency and MDA content in the range of 8.76-26.30% were recorded for IW and IM treatments compared with WMC and MMC, respectively. Compared with the WMC and MMC, IW and IM also triggered better antioxidant activities under both N rates. Moreover, we also noted that intercropping and N addition regulated the transcript levels of six genes encoding non-enzymatic antioxidants cycle enzymes. The better performance of intercropping treatments i.e., IW and IM were also associated with improved osmolytes accumulation under rainfed conditions. As compared with control, N addition significantly improved the chlorophyll fluorescence, gas exchange traits, lipid peroxidation, and antioxidant enzyme activities under all intercropping treatments. Our results increase our understanding of the physiological, biochemical, and molecular mechanisms of intercropping-induced water stress tolerance in wheat and maize crops.


Assuntos
Triticum , Zea mays , Antioxidantes , Desidratação , Produtos Agrícolas , Fotossíntese , Clorofila
12.
PLoS Biol ; 21(7): e3002210, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37486945

RESUMO

1p32.3 microdeletion/duplication is implicated in many neurodevelopmental disorders-like phenotypes such as developmental delay, intellectual disability, autism, macro/microcephaly, and dysmorphic features. The 1p32.3 chromosomal region harbors several genes critical for development; however, their validation and characterization remain inadequate. One such gene is the single-stranded DNA-binding protein 3 (SSBP3) and its Drosophila melanogaster ortholog is called sequence-specific single-stranded DNA-binding protein (Ssdp). Here, we investigated consequences of Ssdp manipulations on neurodevelopment, gene expression, physiological function, and autism-associated behaviors using Drosophila models. We found that SSBP3 and Ssdp are expressed in excitatory neurons in the brain. Ssdp overexpression caused morphological alterations in Drosophila wing, mechanosensory bristles, and head. Ssdp manipulations also affected the neuropil brain volume and glial cell number in larvae and adult flies. Moreover, Ssdp overexpression led to differential changes in synaptic density in specific brain regions. We observed decreased levels of armadillo in the heads of Ssdp overexpressing flies, as well as a decrease in armadillo and wingless expression in the larval wing discs, implicating the involvement of the canonical Wnt signaling pathway in Ssdp functionality. RNA sequencing revealed perturbation of oxidative stress-related pathways in heads of Ssdp overexpressing flies. Furthermore, Ssdp overexpressing brains showed enhanced reactive oxygen species (ROS), altered neuronal mitochondrial morphology, and up-regulated fission and fusion genes. Flies with elevated levels of Ssdp exhibited heightened anxiety-like behavior, altered decisiveness, defective sensory perception and habituation, abnormal social interaction, and feeding defects, which were phenocopied in the pan-neuronal Ssdp knockdown flies, suggesting that Ssdp is dosage sensitive. Partial rescue of behavioral defects was observed upon normalization of Ssdp levels. Notably, Ssdp knockdown exclusively in adult flies did not produce behavioral and functional defects. Finally, we show that optogenetic manipulation of Ssdp-expressing neurons altered autism-associated behaviors. Collectively, our findings provide evidence that Ssdp, a dosage-sensitive gene in the 1p32.3 chromosomal region, is associated with various anatomical, physiological, and behavioral defects, which may be relevant to neurodevelopmental disorders like autism. Our study proposes SSBP3 as a critical gene in the 1p32.3 microdeletion/duplication genomic region and sheds light on the functional role of Ssdp in neurodevelopmental processes in Drosophila.


Assuntos
Transtorno Autístico , Proteínas de Drosophila , Fatores de Transcrição , Animais , Humanos , Tatus/metabolismo , Transtorno Autístico/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Biomed Res Int ; 2023: 6399699, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377461

RESUMO

Background: Human life quality and expectancy have increased dramatically over the past 5 decades because of improvements in nutrition and antibiotic's usage fighting against infectious diseases. Yet, it was soon revealed that the microbes adapted to develop resistance to any of the drugs that were used. Recently, there is great concern that commensal bacteria from food and the gastrointestinal tract of humans and animals could act as a reservoir for antibiotic resistance genes. Methodology. This study was intended for evaluating the phenotypic antibiotic resistance/sensitivity profiles of probiotic bacteria from human breast milk and evaluating the inhibitory effect of the probiotic bacteria against both Gram-negative and Gram-positive bacteria. Results: The results point out that some of the isolated bacteria were resistant to diverse antibiotics including gentamycin, imipenem, trimethoprim sulfamethoxazole, and nalidixic acid. Susceptibility profile to certain antibiotics like vancomycin, tetracycline, ofloxacin, chloramphenicol, streptomycin, rifampicin, and bacitracin was also observed. The antimicrobial qualities of cell-free supernatants of some probiotic bacteria inhibited the growth of indicator bacteria. Also, antimicrobial properties of the probiotic bacteria from the present study attributed to the production of organic acid, bacterial adhesion to hydrocarbons (BATH), salt aggregation, coaggregation with pathogens, and bacteriocin production. Some isolated bacteria from human milk displayed higher hydrophobicity in addition to intrinsic probiotic properties like Gram-positive classification, catalase-negative activity, resistance to gastric juice (pH 2), and bile salt (0.3%) concentration. Conclusion: This study has added to the data of the antibiotic and antimicrobial activity of some probiotic bacteria from some samples of Pakistani women breast milk. Probiotic bacteria are usually considered to decrease gastrointestinal tract diseases by adhering to the gut epithelial and reducing population of pathogens and in the case of Streptococcus lactarius MB622 and Streptococcus salivarius MB620 in terms of hydrophobicity and exclusion of indicator pathogenic strains.


Assuntos
Anti-Infecciosos , Probióticos , Animais , Humanos , Feminino , Leite Humano , Paquistão , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Bactérias , Probióticos/farmacologia
14.
Front Plant Sci ; 14: 1150225, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035065

RESUMO

Intercropping has been acknowledged as a sustainable practice for enhancing crop productivity and water use efficiency under rainfed conditions. However, the contribution of different planting rows towards crop physiology and yield is elusive. In addition, the influence of nitrogen (N) fertilization on the physiology, yield, and soil water storage of rainfed intercropping systems is poorly understood; therefore, the objective of this experiment was to study the contribution of different crop rows on the physiological, yield, and related traits of wheat/maize relay-strip intercropping (RSI) with and without N application. The treatments comprised of two factors viz. intercropping with three levels (sole wheat, sole maize, and RSI) and two N application rates, with and without N application. Results showed that RSI significantly improved the land use efficiency and grain yield of both crops under rainfed conditions. Intercropping with N application (+N treatment) resulted in the highest wheat grain yield with 70.37 and 52.78% increase as compared with monoculture and without N application in 2019 and 2020, respectively, where border rows contributed the maximum followed by second rows. The increase in grain yield was attributed to higher values of the number of ears per square meter (10-25.33% more in comparison to sole crop without N application) during both study years. The sole wheat crop without any N application recorded the least values for all yield-related parameters. Despite the absence of significant differences, the relative decrease in intercropped maize under both N treatments was over 9% compared to the sole maize crop, which was mainly ascribed to the border rows (24.65% decrease compared to the sole crop) that recorded 12 and 13% decrease in kernel number and thousand-grain weight, respectively than the sole crop. This might be attributed to the reduced photosynthesis and chlorophyll pigmentation in RSI maize crop during the blended growth period. In a nutshell, it can be concluded that wheat/maize RSI significantly improved the land use efficiency and the total yield compared to the sole crops' yield in arid areas in which yield advantages were mainly ascribed to the improvement in wheat yield.

15.
Environ Sci Pollut Res Int ; 30(22): 62341-62354, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36940029

RESUMO

Travel and tourism support a country's economy and improve its social outlook. The religious inclination is an important factor influencing tourism and constitutes a significant part of general tourism. Thus, assessing and evaluating its real impacts on a country is crucial. As the world continues to grapple with the effects of environmental degradation, numerous studies have delved into the research between tourism, energy consumption, and pollution emissions. However, the impact of religious tourism on the environment is often overlooked. To bridge this gap, this study explores the relationship between religious tourist arrivals, geopolitical risk, and environmental quality in Italy. By employing ARDL and wavelets coherence analysis on the Italian data from 1997 to 2019, the findings of this study reveal a mitigation effect of religious tourist arrivals and geopolitical risk on CO2 pollution levels. In contrast, it highlights the significance of foreign direct investment and transportation as significant contributors to CO2 pollution. In conclusion, the study highlights the crucial role that religious tourism and religious leaders can play in mitigating environmental pollution and the importance of considering this aspect in future environmental studies as well as emphasize the need for Italian authorities to pay close attention to the impact of foreign direct investment and transportation energy consumption on the environment to achieve sustainable development goals.


Assuntos
Dióxido de Carbono , Turismo , Dióxido de Carbono/análise , Desenvolvimento Sustentável , Poluição Ambiental/análise , Viagem , Desenvolvimento Econômico
16.
Plant Physiol Biochem ; 195: 341-350, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36681064

RESUMO

Drought is one of the major abiotic stresses which negatively affects plant growth and development. The current study evaluated the effects of drought on the growth, physiology, and biochemical attributes of wheat seedlings; and examined the role of foliar application of ZnO nanoparticles in alleviating drought-induced effects. Two wheat cultivars i.e., Anaj-2017 and FSD-2018 were grown in soil-filled pots and were subjected to 100% field capacity (FC) (well watered) and 50% of FC (drought stress). Whilst different treatments of ZnO nanoparticles spray included no spray, water spray, and 50, 100, and 150 ppm ZnO. Results demonstrated that drought caused a significant reduction in seedling fresh and dry weights, photosynthetic pigmentation, and antioxidant activities compared with a well-watered treatment. Nevertheless, the application of 100 and 150 ppm of ZnO nanoparticles effectively ameliorated the negative effects of drought and enhanced the performance of both cultivars under drought. Data revealed a significant increase in fresh and dry weight of shoot and root with the application of ZnO nanoparticles. A substantial increase of 73.68% and 28.51% in chlorophyll "a" and 26.15% and 50.02% in chlorophyll "b" was recorded with the application of 100 ppm of ZnO nanoparticles in Anaj-2017 and FSD-2018, respectively over control (0 ppm). The application of these nanoparticles also triggered the antioxidant defense system and protected the crop from oxidative damage. Averaged across different stress treatments, application of 150 and 100 ppm of ZnO nanoparticles increased the peroxidase activity by 60% and 72% in FSD-2018, and 15% and 23% in Anaj-2017, respectively compared with no spray. FSD-2018 outperformed Anaj-2017 regarding its overall performance under ZnO treatments and drought conditions. In a nutshell, it can be concluded that ZnO nanoparticles ameliorated the negative impacts of drought by improving the growth, physiology, and antioxidant defense of both wheat cultivars.


Assuntos
Óxido de Zinco , Óxido de Zinco/farmacologia , Plântula , Secas , Triticum/fisiologia , Antioxidantes/farmacologia , Clorofila , Água/farmacologia , Clorofila A
17.
J Environ Manage ; 329: 117084, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36565501

RESUMO

Optimized straw and nitrogen (N) fertilizer management instrumental in realizing synchronized soil N supply and crop N requirement (Nr), reducing nitrate-N leaching and achieving efficient and cleaner agricultural production systems, especially in the areas with poor soil fertility retention. A three-year field trial during 2019-2021 was conducted in northwest China with different straw incorporation methods (SM) (without straw or biochar (NI), straw incorporation (SI) and straw-derived biochar incorporation (BI)) combined with four N application rates (NR) (0, 225, 300, and 375 kg ha-1). The grain yield, Nr and the critical nitrate threshold in the root zone (0-100 cm soil layer; NAc) after maize harvest were determined to optimize straw and N inputs for maize yield enhancement and nitrate residue control. Then the prediction methods of optimal N rate determined with NAc (TONR) and soil testing were modified for straw or straw-derived biochar incorporated spring maize production in the future. The results showed that grain yield and nitrate residue in the deep soil (100-200 cm soil; NA100-200) after maize harvest increased by N application, grain yield further increased but NA100-200 decreased when combined with SI and BI (P < 0.05). In particular, a significant increase in grain yield, Nr and N recovery efficiency (NRE) under BI was attributed to an increase in soil N supply and N assimilation after the tassel stage (VT) of maize as compared with SI (P < 0.05). The NAc values were determined as 49, 104 and 67 kg ha-1 under NI, SI and BI, respectively for maintaining N supply and preventing leaching into 100-200 cm soil. Compared with the economically optimal N rate (EONR), BI combined with TONR (268 kg N ha-1) reduced the N rate by 22 kg ha-1 per year and NA100-200 by 5.3% and increased NRE by 5.7% to achieve 99.7% maximum yield (14.448 Mg ha-1), which was a sustainable management method of straw and N rate for enhancing spring maize production and controlling soil nitrate leaching.


Assuntos
Nitratos , Zea mays , Nitratos/análise , Zea mays/metabolismo , Fertilizantes/análise , Nitrogênio/análise , Agricultura/métodos , Solo/química , China , Grão Comestível/química
18.
Funct Plant Biol ; 50(11): 831-849, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36043237

RESUMO

Environmental stresses, including the salt and heavy metals contaminated sites, signify a threat to sustainable crop production. The existence of these stresses has increased in recent years due to human-induced climate change. In view of this, several remediation strategies including nanotechnology have been studied to find more effective approaches for sustaining the environment. Nanoparticles, due to unique physiochemical properties; i.e. high mobility, reactivity, high surface area, and particle morphology, have shown a promising solution to promote sustainable agriculture. Crop plants easily take up nanoparticles, which can penetrate into the cells to play essential roles in growth and metabolic events. In addition, different iron- and carbon-based nanocompositions enhance the removal of metals from the contaminated sites and water; these nanoparticles activate the functional groups that potentially target specific molecules of the metal pollutants to obtain efficient remediation. This review article emphasises the recent advancement in the application of nanotechnology for the remediation of contaminated soils with metal pollutants and mitigating different abiotic stresses. Different implementation barriers are also discussed. Furthermore, we reported the opportunities and research directions to promote sustainable development based on the application of nanotechnology.


Assuntos
Poluentes Ambientais , Nanopartículas , Poluentes do Solo , Humanos , Nanotecnologia , Estresse Fisiológico
19.
Front Plant Sci ; 13: 1014631, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466232

RESUMO

Improving cropping systems together with suitable agronomic management practices can maintain dry farming productivity and reduce water competition with low N inputs. The objective of the study was to determine the photosynthetic and yield responses of maize and peanut under six treatments: sole maize, sole peanut, maize-peanut intercropping, maize-peanut rotation-intercropping, 20% and 40% N reductions for maize in the maize-peanut rotation-intercropping. Maize-peanut intercropping had no land-use advantage. Intercropped peanut is limited in carboxylation rates and electron transport rate (ETR), leading to a decrease in hundred-grain weight (HGW) and an increase in blighted pods number per plant (NBP). Intercropped peanut adapts to light stress by decreasing light saturation point (Isat) and light compensation point (Icomp) and increasing the electron transport efficiency. Intercropped maize showed an increase in maximum photosynthetic rate (Pnmax) and Icomp due to a combination of improved intercellular CO2 concentration, carboxylation rates, PSII photochemical quantum efficiency, and ETR. Compare to maize-peanut intercropping, maize-peanut rotation-intercropping alleviated the continuous crop barriers of intercropped border row peanut by improving carboxylation rates, electron transport efficiency and decreasing Isat, thereby increasing its HGW and NBP. More importantly, the land equivalent ratio of maize-peanut rotation-intercropping in the second and third planting years were 1.05 and 1.07, respectively, showing obvious land use advantages. A 20% N reduction for maize in maize-peanut rotation-intercropping does not affect photosynthetic character and yield for intercropped crops. However, a 40% N reduction decreased significantly the carboxylation rates, ETR, Icomp and Pnmax of intercropped maize, thereby reducing in a 14.83% HGW and 5.75% lower grain number per spike, and making land-use efficiency negative.

20.
Polymers (Basel) ; 14(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36501562

RESUMO

A complex signal processing technique is usually required to process the data in most sensor design structures, and integration into real applications is also challenging. This work presents a dynamic rotational sensor using polymethyl methacrylate (PMMA) fiber for robot movement assessment. The sensor design structure is based on the coupling of light intensity, in which two PMMA fibers are twisted together. Both fibers are bent after twisting and attached on the linear translation stage, which is further attached to the robot. The variation in bending radius causes the bending loss, and that loss is coupled in the second fiber. The change in the macro-bend radius corresponds to the rotation of the robot. Experimental results indicate that the sensor can operate in full rotational cycle (i.e., 0°-360°) as well as for clock and anti-clockwise rotation. Moreover, different rotational speeds (2°/s, 3°/s, 5°/s, and 10°/s) were carried out. The hysteresis loss of the sensor was about 0.77% and the sensitivity was 8.69 nW/°. The presented dynamic rotational sensor is cost-effective and easily integrated into the robot structure to analyze the robot's circular motion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA