Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(9): 102347, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35963433

RESUMO

Cell death-inducing DNA fragmentation factor-like effector C (CIDEC) expression in adipose tissue positively correlates with insulin sensitivity in obese humans. Further, E186X, a single-nucleotide CIDEC variant is associated with lipodystrophy, hypertriglyceridemia, and insulin resistance. To establish the unknown mechanistic link between CIDEC and maintenance of systemic glucose homeostasis, we generated transgenic mouse models expressing CIDEC (Ad-CIDECtg) and CIDEC E186X variant (Ad-CIDECmut) transgene specifically in the adipose tissue. We found that Ad-CIDECtg but not Ad-CIDECmut mice were protected against high-fat diet-induced glucose intolerance. Furthermore, we revealed the role of CIDEC in lipid metabolism using transcriptomics and lipidomics. Serum triglycerides, cholesterol, and low-density lipoproteins were lower in high-fat diet-fed Ad-CIDECtg mice compared to their littermate controls. Mechanistically, we demonstrated that CIDEC regulates the enzymatic activity of adipose triglyceride lipase via interacting with its activator, CGI-58, to reduce free fatty acid release and lipotoxicity. In addition, we confirmed that CIDEC is indeed a vital regulator of lipolysis in adipose tissue of obese humans, and treatment with recombinant CIDEC decreased triglyceride breakdown in visceral human adipose tissue. Our study unravels a central pathway whereby adipocyte-specific CIDEC plays a pivotal role in regulating adipose lipid metabolism and whole-body glucose homeostasis. In summary, our findings identify human CIDEC as a potential 'drug' or a 'druggable' target to reverse obesity-induced lipotoxicity and glucose intolerance.


Assuntos
Intolerância à Glucose , Resistência à Insulina , Animais , Colesterol , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos não Esterificados , Glucose , Intolerância à Glucose/genética , Intolerância à Glucose/prevenção & controle , Humanos , Resistência à Insulina/genética , Lipase/genética , Metabolismo dos Lipídeos , Lipoproteínas LDL/metabolismo , Camundongos , Nucleotídeos/metabolismo , Obesidade/genética , Proteínas/metabolismo , Transgenes , Triglicerídeos
2.
Infect Immun ; 88(3)2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31792074

RESUMO

RNA thermometers are cis-acting riboregulators that mediate the posttranscriptional regulation of gene expression in response to environmental temperature. Such regulation is conferred by temperature-responsive structural changes within the RNA thermometer that directly result in differential ribosomal binding to the regulated transcript. The significance of RNA thermometers in controlling bacterial physiology and pathogenesis is becoming increasingly clear. This study combines in silico, molecular genetics, and biochemical analyses to characterize both the structure and function of a newly identified RNA thermometer within the ompA transcript of Shigella dysenteriae First identified by in silico structural predictions, genetic analyses have demonstrated that the ompA RNA thermometer is a functional riboregulator sufficient to confer posttranscriptional temperature-dependent regulation, with optimal expression observed at the host-associated temperature of 37°C. Structural studies and ribosomal binding analyses have revealed both increased exposure of the ribosomal binding site and increased ribosomal binding to the ompA transcript at permissive temperatures. The introduction of site-specific mutations predicted to alter the temperature responsiveness of the ompA RNA thermometer has predictable consequences for both the structure and function of the regulatory element. Finally, in vitro tissue culture-based analyses implicate the ompA RNA thermometer as a bona fide S. dysenteriae virulence factor in this bacterial pathogen. Given that ompA is highly conserved among Gram-negative pathogens, these studies not only provide insight into the significance of riboregulation in controlling Shigella virulence, but they also have the potential to facilitate further understanding of the physiology and/or pathogenesis of a wide range of bacterial species.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Regulação Bacteriana da Expressão Gênica , Shigella dysenteriae , Temperatura , Fatores de Virulência , Virulência/genética , RNA Bacteriano/metabolismo , Sequências Reguladoras de Ácido Nucleico/fisiologia , Shigella dysenteriae/patogenicidade , Shigella dysenteriae/fisiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
3.
PLoS One ; 14(4): e0214521, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30933991

RESUMO

Staphylococcus aureus is a Gram-positive bacterial pathogen of global concern and a leading cause of bacterial infections worldwide. Asymptomatic carriage of S. aureus on the skin and in the anterior nares is common and recognized as a predisposing factor to invasive infection. Transition of S. aureus from the carriage state to that of invasive infection is often accompanied by a temperature upshift from approximately 33°C to 37°C. Such a temperature shift is known in other pathogens to influence gene expression, often resulting in increased production of factors that promote survival or virulence within the host. One mechanism by which bacteria modulate gene expression in response to temperature is by the regulatory activity of RNA-based thermosensors, cis-acting riboregulators that control translation efficiency. This study was designed to identify and characterize RNA-based thermosensors in S. aureus. Initially predicted by in silico analyses of the S. aureus USA300 genome, reporter-based gene expression analyses and site-specific mutagenesis were performed to demonstrate the presence of a functional thermosensor within the 5' UTR of cidA, a gene implicated in biofilm formation and survival of the pathogen. The nucleic sequence composing the identified thermosensor are sufficient to confer temperature-dependent post-transcriptional regulation, and activity is predictably altered by the introduction of site-specific mutations designed to stabilize or destabilize the structure within the identified thermosensor. The identified regulator is functional in both the native bacterial host S. aureus and in the distally related species Escherichia coli, suggesting that its regulatory activity is independent of host-specific factors. Interestingly, unlike the majority of bacterial RNA-based thermosensors characterized to date, the cidA thermosensor facilitates increased target gene expression at lower temperatures. In addition to the characterization of the first RNA-based thermosensor in the significant pathogen S. aureus, it highlights the diversity of function within this important class of ribo-regulators.


Assuntos
Regiões 5' não Traduzidas , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , RNA Bacteriano/genética , Staphylococcus aureus/genética , Temperatura , Biofilmes , Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Reporter , Genoma Bacteriano , Humanos , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , RNA/análise , Processamento Pós-Transcricional do RNA , Infecções Estafilocócicas/microbiologia , Virulência , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA