Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(26): e2209779, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36951229

RESUMO

Thermoelectric materials convert heat into electricity through thermally driven charge transport in solids or vice versa for cooling. To compete with conventional energy-conversion technologies, a thermoelectric material must possess the properties of both an electrical conductor and a thermal insulator. However, these properties are normally mutually exclusive because of the interconnection between scattering mechanisms for charge carriers and phonons. Recent theoretical investigations on sub-device scales have revealed that nanopillars attached to a membrane exhibit a multitude of local phonon resonances, spanning the full spectrum, that couple with the heat-carrying phonons in the membrane and cause a reduction in the in-plane thermal conductivity, with no expected change in the electrical properties because the nanopillars are outside the pathway of voltage generation and charge transport. Here this effect is demonstrated experimentally for the first time by investigating device-scale suspended silicon membranes with GaN nanopillars grown on the surface. The nanopillars cause up to 21% reduction in the thermal conductivity while the power factor remains unaffected, thus demonstrating an unprecedented decoupling in the semiconductor's thermoelectric properties. The measured thermal conductivity behavior for coalesced nanopillars and corresponding lattice-dynamics calculations provide evidence that the reductions are mechanistically tied to the phonon resonances. This finding paves the way for high-efficiency solid-state energy recovery and cooling.

2.
J Acoust Soc Am ; 151(1): 286, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35105047

RESUMO

Bragg scattering in periodic media generates bandgaps, frequency bands where waves attenuate rather than propagate. Yet, a finite periodic structure may exhibit resonance frequencies within these bandgaps. This is caused by boundary effects introduced by the truncation of the nominal infinite medium. Previous studies of discrete systems determined existence conditions for bandgap resonances, although the focus has been limited to mainly periodic chains with free-free boundaries. In this paper, we present closed-form existence conditions for bandgap resonances in discrete diatomic chains with general boundary conditions (free-free, free-fixed, fixed-free, or fixed-fixed), odd or even chain parity (contrasting or identical masses at the ends), and the possibility of attaching a unique component (mass and/or spring) at one or both ends. The derived conditions are consistent with those theoretically presented or experimentally observed in prior studies of structures that can be modeled as linear discrete diatomic chains with free-free boundary conditions. An intriguing case is a free-free chain with even parity and an arbitrary additional mass at one end of the chain. Introducing such an arbitrary mass underscores a transition among a set of distinct existence conditions, depending on the type of chain boundaries and parity. The proposed analysis is applicable to linear periodic chains in the form of lumped-parameter models, examined across the frequency spectrum, as well as continuous granular media models, or similar configurations, examined in the low-frequency regime.

3.
Sci Adv ; 7(50): eabl3695, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34878839

RESUMO

We present a theory for the dispersion of generated harmonics in a traveling nonlinear wave. The harmonics dispersion relation (HDR), derived by the theory, provides direct and exact prediction of the collective harmonics spectrum in the frequency­wave number domain and does so without prior knowledge of the u = u(x, t) solution. It is valid throughout the evolution of a distorting unbalanced wave or the steady-steady propagation of a balanced wave with waveform invariance. The new relation is shown to be a special case of the general nonlinear dispersion relation (NDR), which is also derived. The theory is examined on a diverse range of cases of one-dimensional elastic waves and shown to hold irrespective of the spatial form of the initial wave profile, type and strength of the nonlinearity, and the level of dispersion in the linear limit. Another direct outcome of the general NDR is an analytical condition for soliton synthesis.

4.
Proc Natl Acad Sci U S A ; 118(40)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34580227

RESUMO

Understanding nanoscale thermal transport is critical for nano-engineered devices such as quantum sensors, thermoelectrics, and nanoelectronics. However, despite overwhelming experimental evidence for nondiffusive heat dissipation from nanoscale heat sources, the underlying mechanisms are still not understood. In this work, we show that for nanoscale heat source spacings that are below the mean free path of the dominant phonons in a substrate, close packing of the heat sources increases in-plane scattering and enhances cross-plane thermal conduction. This leads to directional channeling of thermal transport-a novel phenomenon. By using advanced atomic-level simulations to accurately access the lattice temperature and the phonon scattering and transport properties, we finally explain the counterintuitive experimental observations of enhanced cooling for close-packed heat sources. This represents a distinct fundamental behavior in materials science with far-reaching implications for electronics and future quantum devices.

5.
Rep Prog Phys ; 84(8)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-33434894

RESUMO

The introduction of engineered resonance phenomena on surfaces has opened a new frontier in surface science and technology. Pillared phononic crystals, metamaterials, and metasurfaces are an emerging class of artificial structured media, featuring surfaces that consist of pillars-or branching substructures-standing on a plate or a substrate. A pillared phononic crystal exhibits Bragg band gaps, while a pillared metamaterial may feature both Bragg band gaps and local resonance hybridization band gaps. These two band-gap phenomena, along with other unique wave dispersion characteristics, have been exploited for a variety of applications spanning a range of length scales and covering multiple disciplines in applied physics and engineering, particularly in elastodynamics and acoustics. The intrinsic placement of pillars on a semi-infinite surface-yielding a metasurface-has similarly provided new avenues for the control and manipulation of wave propagation. Classical waves are admitted in pillared media, including Lamb waves in plates and Rayleigh and Love waves along the surfaces of substrates, ranging in frequency from hertz to several gigahertz. With the presence of the pillars, these waves couple with surface resonances richly creating new phenomena and properties in the subwavelength regime and in some applications at higher frequencies as well. At the nanoscale, it was shown that atomic-scale resonances-stemming from nanopillars-alter the fundamental nature of conductive thermal transport by reducing the group velocities and generating mode localizations across the entire spectrum of the constituent material well into the terahertz regime. In this article, we first overview the history and development of pillared materials, then provide a detailed synopsis of a selection of key research topics that involve the utilization of pillars or similar branching substructures in different contexts. Finally, we conclude by providing a short summary and some perspectives on the state of the field and its promise for further future development.

6.
J Acoust Soc Am ; 138(5): 3169-80, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26627790

RESUMO

The dispersive behavior of phononic crystals and locally resonant metamaterials is influenced by the type and degree of damping in the unit cell. Dissipation arising from viscoelastic damping is influenced by the past history of motion because the elastic component of the damping mechanism adds a storage capacity. Following a state-space framework, a Bloch eigenvalue problem incorporating general viscoelastic damping based on the Zener model is constructed. In this approach, the conventional Kelvin-Voigt viscous-damping model is recovered as a special case. In a continuous fashion, the influence of the elastic component of the damping mechanism on the band structure of both a phononic crystal and a metamaterial is examined. While viscous damping generally narrows a band gap, the hereditary nature of the viscoelastic conditions reverses this behavior. In the limit of vanishing heredity, the transition between the two regimes is analyzed. The presented theory also allows increases in modal dissipation enhancement (metadamping) to be quantified as the type of damping transitions from viscoelastic to viscous. In conclusion, it is shown that engineering the dissipation allows one to control the dispersion (large versus small band gaps) and, conversely, engineering the dispersion affects the degree of dissipation (high or low metadamping).

7.
Phys Rev Lett ; 112(5): 055505, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24580612

RESUMO

We present the concept of a locally resonant nanophononic metamaterial for thermoelectric energy conversion. Our configuration, which is based on a silicon thin film with a periodic array of pillars erected on one or two of the free surfaces, qualitatively alters the base thin-film phonon spectrum due to a hybridization mechanism between the pillar local resonances and the underlying atomic lattice dispersion. Using an experimentally fitted lattice-dynamics-based model, we conservatively predict the metamaterial thermal conductivity to be as low as 50% of the corresponding uniform thin-film value despite the fact that the pillars add more phonon modes to the spectrum.

8.
Artigo em Inglês | MEDLINE | ID: mdl-25615221

RESUMO

We present a methodology for fast band-structure calculations that is generally applicable to problems of elastic wave propagation in periodic media. The methodology, called Bloch mode synthesis, represents an extension of component mode synthesis, a set of substructuring techniques originally developed for structural dynamics analysis. In Bloch mode synthesis, the unit cell is divided into interior and boundary degrees-of-freedom, which are described, respectively, by a set of normal modes and a set of constraint modes. A combination of these mode sets then forms a reduced basis for the band structure eigenvalue problem. The reduction is demonstrated on a phononic-crystal model and a locally resonant elastic-metamaterial model and is shown to accurately predict the frequencies and Bloch mode shapes with a dramatic decrease in computation time in excess of two orders of magnitude.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(6 Pt 2): 065701, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22304147

RESUMO

We consider two-dimensional phononic crystals formed from silicon and voids, and present optimized unit-cell designs for (1) out-of-plane, (2) in-plane, and (3) combined out-of-plane and in-plane elastic wave propagation. To feasibly search through an excessively large design space (~10(40) possible realizations) we develop a specialized genetic algorithm and utilize it in conjunction with the reduced Bloch mode expansion method for fast band-structure calculations. Focusing on high-symmetry plain-strain square lattices, we report unit-cell designs exhibiting record values of normalized band-gap size for all three categories. For the case of combined polarizations, we reveal a design with a normalized band-gap size exceeding 60%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA