Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 18604, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127761

RESUMO

Silica fiber under high pressure increases the risk of fiber breakage or permanent deformation, which may cause sensor failure due to mechanical strength limitations. High pressure can also induce birefringence in optical fiber. In this study, we present a simple design and low-cost high pressure sensor using polymer optical fiber (POF) based on the intensity-variation technique. A side-coupling mechanism in the sensor structure is adopted, which varies the intensity with applied pressure. Two POFs are twisted together to create a sensing region where the light is launched in the first fiber and measurement is taken from the second fiber. In sensing phenomena, cladding mode frustrated total internal reflection occurs when pressure increases. Silicone gel is used in the pressure chamber for sealing and preventing leakage. The sensor structure is able to detect high pressure in the MPa range, where we tested up to 4 MPa. For higher sensitivity, twisted and bend structure is analyzed, and sensitivity is achieved at about 432.21 nW/MPa. However, twisted helical structure is adopted to enhance sensing range which is about 50 cm. The proposed high-pressure sensor structure is easier to fabricate and has high stability because it doesn't require any destructive method as compared to other conventional methods.

3.
Sci Rep ; 14(1): 10735, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730029

RESUMO

The humidity has often been measured through a single point sensor. Where, the humidity could be varied at different locations as well as depending on environmental conditions. The present paper developed the dual point humidity measuring sensor by using a polymer optical fiber (POF) based on a single illuminating fiber. The sensor's basic structure is to twist two fibers and bend them at a certain radius. However, the dual point sensor is developed through the cascading of twisted micro bend (TMB-1 and TMB-2). The twisting of fibers couples the light from one fiber to another fiber through the side coupling method. An increase in the humidity level leads to a change in the reflective index, which helps to get variation in coupled light intensity. To measure the humidity, the dual point sensors are placed into the control humidity chamber at two random positions. The power reading variation is significantly linear when the humidity level increases from 30 to 80%. The sensor has a fast response of about 1 s and a recovery time of about 4 s. Furthermore, the chemical coating is applied to improve the sensor's sensitivity. Between 30 and 80% range of humidity, the both sensors of dual point TMB-1 and TMB-2 have appropriate sensitivity and detection limits, which is about 680.8 nW/% and 763.9 nW/% and 1.37% and 1.98%, respectively. To measure the humidity at variable positions, the present dual points humidity sensor is well-stable, easy, and straightforward, which uses a less expensive method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA