Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
PLoS Pathog ; 20(4): e1011906, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38669269

RESUMO

The apicomplexan parasite Cryptosporidium is a leading cause of childhood diarrhea in developing countries. Current treatment options are inadequate and multiple preclinical compounds are being actively pursued as potential drugs for cryptosporidiosis. Unlike most apicomplexans, Cryptosporidium spp. sequentially replicate asexually and then sexually within a single host to complete their lifecycles. Anti-cryptosporidial compounds are generally identified or tested through in vitro phenotypic assays that only assess the asexual stages. Therefore, compounds that specifically target the sexual stages remain unexplored. In this study, we leveraged the ReFRAME drug repurposing library against a newly devised multi-readout imaging assay to identify small-molecule compounds that modulate macrogamont differentiation and maturation. RNA-seq studies confirmed selective modulation of macrogamont differentiation for 10 identified compounds (9 inhibitors and 1 accelerator). The collective transcriptomic profiles of these compounds indicates that translational repression accompanies Cryptosporidium sexual differentiation, which we validated experimentally. Additionally, cross comparison of the RNA-seq data with promoter sequence analysis for stage-specific genes converged on a key role for an Apetala 2 (AP2) transcription factor (cgd2_3490) in differentiation into macrogamonts. Finally, drug annotation for the ReFRAME hits indicates that an elevated supply of energy equivalence in the host cell is critical for macrogamont formation.


Assuntos
Criptosporidiose , Cryptosporidium , Estágios do Ciclo de Vida , Proteínas de Protozoários , Criptosporidiose/parasitologia , Criptosporidiose/tratamento farmacológico , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Estágios do Ciclo de Vida/efeitos dos fármacos , Cryptosporidium/efeitos dos fármacos , Cryptosporidium/genética , Cryptosporidium/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Animais , Humanos , Bibliotecas de Moléculas Pequenas/farmacologia
2.
bioRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808810

RESUMO

Typical cancer cell-based culture systems cannot support the full life cycle of Cryptosporidium parvum, despite its monoxenous life cycle which is completed in the small intestine of a single host. There is a block to fertilization and zygote formation in vitro. In this paper, we adapted a 2D organoid derived monolayer system and a 3D inverted enteroid system for use in C. parvum culture. 3D inverted enteroids were successfully infected by C. parvum without the need for microinjection and supported subculture of C. parvum. Using the 2D organoid derived monolayer (ODM) system, the infection can be maintained for at least 3 weeks with new oocyst production throughout. Fertilization was confirmed based on successful mating of two strains of C. parvum. We demonstrated that the apparent block to fertilization in typical cell culture is overcome using ODMs.

3.
J Med Chem ; 66(12): 7834-7848, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37267631

RESUMO

Our previous work identified compound 1 (SLU-2633) as a potent lead compound toward the identification of a novel treatment for cryptosporidiosis, caused by the parasite Cryptosporidium (EC50 = 0.17 µM). While this compound is potent and orally efficacious, the mechanism of action and biological target(s) of this series are currently unknown. In this study, we synthesized 70 compounds to develop phenotypic structure-activity relationships around the aryl "tail" group. In this process, we found that 2-substituted compounds are inactive, confirmed that electron withdrawing groups are preferred over electron donating groups, and that fluorine plays a remarkable role in the potency of these compounds. The most potent compound resulting from this work is SLU-10482 (52, EC50 = 0.07 µΜ), which was found to be orally efficacious with an ED90 < 5 mg/kg BID in a Cryptosporidium-infection mouse model, superior to SLU-2633.


Assuntos
Criptosporidiose , Cryptosporidium , Camundongos , Animais , Criptosporidiose/tratamento farmacológico , Flúor , Relação Estrutura-Atividade
4.
Bioorg Med Chem ; 86: 117295, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37148788

RESUMO

Cryptosporidiosis is a diarrheal disease particularly harmful to children and immunocompromised people. Infection is caused by the parasite Cryptosporidium and leads to dehydration, malnutrition, and death in severe cases. Nitazoxanide is the only FDA approved drug but is only modestly effective in children and ineffective in immunocompromised patients. To address this unmet medical need, we previously identified triazolopyridazine SLU-2633 as potent against Cryptosporidium parvum, with an EC50 of 0.17 µM. In the present study, we develop structure-activity relationships (SAR) for the replacement of the triazolopyridazine head group by exploring different heteroaryl groups with the aim of maintaining potency while reducing affinity for the hERG channel. 64 new analogs of SLU-2633 were synthesized and assayed for potency versus C. parvum. The most potent compound, 7,8-dihydro-[1,2,4]triazolo[4,3-b]pyridazine 17a, was found to have a Cp EC50 of 1.2 µM, 7-fold less potent than SLU-2633 but has an improved lipophilic efficiency (LipE) score. 17a was found to decrease inhibition in an hERG patch-clamp assay by about two-fold relative to SLU-2633 at 10 µM despite having similar inhibition in a [3H]-dofetilide competitive binding assay. While most other heterocycles were significantly less potent than the lead, some analogs such as azabenzothiazole 31b, have promising potency in the low micromolar range, similar to the drug nitazoxanide, and represent potential new leads for optimization. Overall, this work highlights the important role of the terminal heterocyclic head group and represents a significant extension of the understanding of the SAR for this class of anti-Cryptosporidium compounds.


Assuntos
Antiprotozoários , Cryptosporidium , Criança , Humanos , Antiprotozoários/farmacologia , Nitrocompostos/farmacologia , Relação Estrutura-Atividade
5.
J Med Chem ; 64(15): 11729-11745, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34342443

RESUMO

Cryptosporidiosis is caused by infection of the small intestine by Cryptosporidium parasites, resulting in severe diarrhea, dehydration, malabsorption, and potentially death. The only FDA-approved therapeutic is only partially effective in young children and ineffective for immunocompromised patients. Triazolopyridazine MMV665917 is a previously reported anti-Cryptosporidium screening hit with in vivo efficacy but suffers from modest inhibition of the hERG ion channel, which could portend cardiotoxicity. Herein, we describe our initial development of structure-activity relationships of this novel lead series with a particular focus on optimization of the piperazine-urea linker. We have discovered that piperazine-acetamide is a superior linker resulting in identification of SLU-2633, which has an EC50 of 0.17 µM, an improved projected margin versus hERG, prolonged pharmacokinetic exposure in small intestine, and oral efficacy in vivo with minimal systemic exposure. SLU-2633 represents a significant advancement toward the identification of a new effective and safe treatment for cryptosporidiosis.


Assuntos
Antiprotozoários/farmacologia , Criptosporidiose/tratamento farmacológico , Cryptosporidium/efeitos dos fármacos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Antiprotozoários/síntese química , Antiprotozoários/química , Linhagem Celular , Relação Dose-Resposta a Droga , Canais de Potássio Éter-A-Go-Go/metabolismo , Humanos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
6.
Artigo em Inglês | MEDLINE | ID: mdl-33753338

RESUMO

The intestinal protozoan Cryptosporidium is a leading cause of diarrheal disease and mortality in young children. There is currently no fully effective treatment for cryptosporidiosis, which has stimulated interest in anticryptosporidial development over the last ∼10 years, with numerous lead compounds identified, including several tRNA synthetase inhibitors. Here, we report the results of a dairy calf efficacy trial of the methionyl-tRNA (Cryptosporidium parvum MetRS [CpMetRS]) synthetase inhibitor 2093 and the spontaneous emergence of drug resistance. Dairy calves experimentally infected with Cryptosporidium parvum initially improved with 2093 treatment, but parasite shedding resumed in two of three calves on treatment day 5. Parasites shed by each recrudescent calf had different amino acid-altering mutations in the gene encoding CpMetRS (CpMetRS), yielding either an aspartate 243-to-glutamate (D243E) or a threonine 246-to-isoleucine (T246I) mutation. Transgenic parasites engineered to have either the D243E or T246I CpMetRS mutation using CRISPR/Cas9 grew normally but were highly 2093 resistant; the D243E and T246I mutant-expressing parasites, respectively, had 2093 half-maximal effective concentrations (EC50s) that were 613- and 128-fold that of transgenic parasites with wild-type CpMetRS. In studies using recombinant enzymes, the D243E and T246I mutations shifted the 2093 IC50 >170-fold. Structural modeling of CpMetRS based on an inhibitor-bound Trypanosoma brucei MetRS crystal structure suggested that the resistance mutations reposition nearby hydrophobic residues, interfering with compound binding while minimally impacting substrate binding. This is the first report of naturally emerging Cryptosporidium drug resistance, highlighting the need to address the potential for anticryptosporidial resistance and establish strategies to limit its occurrence.


Assuntos
Doenças dos Bovinos , Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Animais , Bovinos , Doenças dos Bovinos/tratamento farmacológico , Criança , Pré-Escolar , Criptosporidiose/tratamento farmacológico , Cryptosporidium/genética , Cryptosporidium parvum/genética , Resistência a Medicamentos/genética , Fezes , Humanos
9.
PLoS Biol ; 18(10): e3000896, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33006983

RESUMO

The ongoing COVID-19 pandemic has created an unprecedented need for rapid diagnostic testing. The World Health Organization (WHO) recommends a standard assay that includes an RNA extraction step from a nasopharyngeal (NP) swab followed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to detect the purified SARS-CoV-2 RNA. The current global shortage of RNA extraction kits has caused a severe bottleneck to COVID-19 testing. The goal of this study was to determine whether SARS-CoV-2 RNA could be detected from NP samples via a direct RT-qPCR assay that omits the RNA extraction step altogether. The direct RT-qPCR approach correctly identified 92% of a reference set of blinded NP samples (n = 155) demonstrated to be positive for SARS-CoV-2 RNA by traditional clinical diagnostic RT-qPCR that included an RNA extraction. Importantly, the direct method had sufficient sensitivity to reliably detect those patients with viral loads that correlate with the presence of infectious virus. Thus, this strategy has the potential to ease supply choke points to substantially expand COVID-19 testing and screening capacity and should be applicable throughout the world.


Assuntos
Betacoronavirus/genética , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , RNA Viral/genética , Kit de Reagentes para Diagnóstico/normas , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Betacoronavirus/patogenicidade , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico/normas , Infecções por Coronavirus/virologia , Primers do DNA/normas , Humanos , Nasofaringe/virologia , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Sensibilidade e Especificidade , Estados Unidos , Carga Viral
10.
Sci Transl Med ; 12(563)2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32998973

RESUMO

Cryptosporidium is a protozoan parasite and a leading cause of diarrheal disease and mortality in young children. Currently, there are no fully effective treatments available to cure infection with this diarrheal pathogen. In this study, we report a broad drug repositioning effort that led to the identification of bicyclic azetidines as a new anticryptosporidial series. Members of this series blocked growth in in vitro culture of three Cryptosporidium parvum isolates with EC50 's in 1% serum of <0.4 to 96 nM, had comparable potencies against Cryptosporidium hominis and C. parvum, and was effective in three of four highly susceptible immunosuppressed mice with once-daily dosing administered for 4 days beginning 2 weeks after infection. Comprehensive genetic, biochemical, and chemical studies demonstrated inhibition of C. parvum phenylalanyl-tRNA synthetase (CpPheRS) as the mode of action of this new lead series. Introduction of mutations directly into the C. parvum pheRS gene by CRISPR-Cas9 genome editing resulted in parasites showing high degrees of compound resistance. In vitro, bicyclic azetidines potently inhibited the aminoacylation activity of recombinant ChPheRS. Medicinal chemistry optimization led to the identification of an optimal pharmacokinetic/pharmacodynamic profile for this series. Collectively, these data demonstrate that bicyclic azetidines are a promising series for anticryptosporidial drug development and establish a broad framework to enable target-based drug discovery for this infectious disease.


Assuntos
Azetidinas , Criptosporidiose , Cryptosporidium , Parasitos , Fenilalanina-tRNA Ligase , Animais , Azetidinas/farmacologia , Criptosporidiose/tratamento farmacológico , Diarreia , Camundongos
12.
mBio ; 11(4)2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753489

RESUMO

Invasion of the colon wall by Entamoeba histolytica during amoebic dysentery entails migration of trophozoites through tissue layers that are rich in extracellular matrix. Transcriptional silencing of the E. histolytica surface metalloprotease EhMSP-1 produces hyperadherent less-motile trophozoites that are deficient in forming invadosomes. Reversible protein phosphorylation is often implicated in regulation of cell motility and invadosome formation. To identify such intermediaries of the EhMSP-1-silenced phenotype, here we compared the phosphoproteomes of EhMSP-1-silenced and vector control trophozoites by using quantitative tandem mass spectrometry-based proteomics. Six proteins were found to be differentially phosphorylated in EhMSP-1-silenced and control cells, including EhCoactosin, a member of the ADF/cofilin family of actin-binding proteins, which was more frequently phosphorylated at serine 147. Regulated overexpression of wild-type, phosphomimetic, and nonphosphorylatable EhCoactosin variants was used to test if phosphorylation functions in control of E. histolytica actin dynamics. Each of the overexpressed proteins colocalized with F-actin during E. histolytica phagocytosis. Nonetheless, trophozoites overexpressing an EhCoactosin phosphomimetic mutant formed more and poorly coordinated cell membrane protrusions compared to those in control or cells expressing a nonphosphorylatable mutant, while trophozoites overexpressing nonphosphorylatable EhCoactosin were significantly more motile within a model of mammalian extracellular matrix. Therefore, although EhCoactosin's actin-binding ability appeared unaffected by phosphorylation, EhCoactosin phosphorylation helps to regulate amoebic motility. These data help to understand the mechanisms underlying altered adherence and motility in EhMSP-1-silenced trophozoites and lay the groundwork for identifying kinases and phosphatases critical for control of amoebic invasiveness.IMPORTANCE Invasive amoebiasis, caused by the intestinal parasite Entamoeba histolytica, causes life-threatening diarrhea and liver abscesses, but, for unknown reasons, only approximately 10% of E. histolytica infections become symptomatic. A key requirement of invasion is the ability of the parasite to migrate through tissue layers. Here, we systematically looked for differences in protein phosphorylation between control parasites and a previously identified hyperadherent E. histolytica cell line that has reduced motility. We identified EhCoactosin, an actin-binding protein not previously known to be phosphoregulated, as one of the differentially phosphorylated proteins in E. histolytica and demonstrated that EhCoactosin phosphorylation functions in control of cell membrane dynamics and amoebic motility. This and the additional differentially phosphorylated proteins reported lay the groundwork for identifying kinases and phosphatases that regulate tissue invasiveness.


Assuntos
Extensões da Superfície Celular/fisiologia , Entamoeba histolytica/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Protozoários/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Entamoeba histolytica/genética , Movimento , Fagocitose , Fosfoproteínas/genética , Fosforilação , Proteômica , Proteínas de Protozoários/genética
14.
bioRxiv ; 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32511328

RESUMO

The ongoing COVID-19 pandemic has caused an unprecedented need for rapid diagnostic testing. The Centers for Disease Control and Prevention (CDC) and the World Health Organization (WHO) recommend a standard assay that includes an RNA extraction step from a nasopharyngeal (NP) swab followed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to detect the purified SARS-CoV-2 RNA. The current global shortage of RNA extraction kits has caused a severe bottleneck to COVID-19 testing. We hypothesized that SARS-CoV-2 RNA could be detected from NP samples via a direct RT-qPCR assay that omits the RNA extraction step altogether, and tested this hypothesis on a series of blinded clinical samples. The direct RT-qPCR approach correctly identified 92% of NP samples (n = 155) demonstrated to be positive for SARS-CoV-2 RNA by traditional clinical diagnostic RT-qPCR that included an RNA extraction. Thus, direct RT-qPCR could be a front-line approach to identify the substantial majority of COVID-19 patients, reserving a repeat test with RNA extraction for those individuals with high suspicion of infection but an initial negative result. This strategy would drastically ease supply chokepoints of COVID-19 testing and should be applicable throughout the world.

15.
PLoS Negl Trop Dis ; 14(3): e0008150, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32196500

RESUMO

Parasitic infections are a major source of human suffering, mortality, and economic loss, but drug development for these diseases has been stymied by the significant expense involved in bringing a drug though clinical trials and to market. Identification of single compounds active against multiple parasitic pathogens could improve the economic incentives for drug development as well as simplifying treatment regimens. We recently performed a screen of repurposed compounds against the protozoan parasite Entamoeba histolytica, causative agent of amebic dysentery, and identified four compounds (anisomycin, prodigiosin, obatoclax and nithiamide) with low micromolar potency and drug-like properties. Here, we extend our investigation of these drugs. We assayed the speed of killing of E. histolytica trophozoites and found that all four have more rapid action than the current drug of choice, metronidazole. We further established a multi-institute collaboration to determine whether these compounds may have efficacy against other parasites and opportunistic pathogens. We found that anisomycin, prodigiosin and obatoclax all have broad-spectrum antiparasitic activity in vitro, including activity against schistosomes, T. brucei, and apicomplexan parasites. In several cases, the drugs were found to have significant improvements over existing drugs. For instance, both obatoclax and prodigiosin were more efficacious at inhibiting the juvenile form of Schistosoma than the current standard of care, praziquantel. Additionally, low micromolar potencies were observed against pathogenic free-living amebae (Naegleria fowleri, Balamuthia mandrillaris and Acanthamoeba castellanii), which cause CNS infection and for which there are currently no reliable treatments. These results, combined with the previous human use of three of these drugs (obatoclax, anisomycin and nithiamide), support the idea that these compounds could serve as the basis for the development of broad-spectrum anti-parasitic drugs.


Assuntos
Anisomicina/farmacologia , Antiparasitários/farmacologia , Reposicionamento de Medicamentos , Parasitos/efeitos dos fármacos , Prodigiosina/farmacologia , Pirróis/farmacologia , Animais , Anisomicina/efeitos adversos , Anisomicina/farmacocinética , Antiparasitários/efeitos adversos , Antiparasitários/farmacocinética , Linhagem Celular , Sobrevivência Celular , Fibroblastos/efeitos dos fármacos , Humanos , Indóis , Camundongos , Testes de Sensibilidade Parasitária , Prodigiosina/efeitos adversos , Prodigiosina/farmacocinética , Pirróis/efeitos adversos , Pirróis/farmacocinética , Ratos
16.
Nat Commun ; 10(1): 2816, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31249291

RESUMO

Cryptosporidiosis is a leading cause of life-threatening diarrhea in young children and causes chronic diarrhea in AIDS patients, but the only approved treatment is ineffective in malnourished children and immunocompromised people. We here use a drug repositioning strategy and identify a promising anticryptosporidial drug candidate. Screening a library of benzoxaboroles comprised of analogs to four antiprotozoal chemical scaffolds under pre-clinical development for neglected tropical diseases for Cryptosporidium growth inhibitors identifies the 6-carboxamide benzoxaborole AN7973. AN7973 blocks intracellular parasite development, appears to be parasiticidal, and potently inhibits the two Cryptosporidium species most relevant to human health, C. parvum and C. hominis. It is efficacious in murine models of both acute and established infection, and in a neonatal dairy calf model of cryptosporidiosis. AN7973 also possesses favorable safety, stability, and PK parameters, and therefore, is an exciting drug candidate for treating cryptosporidiosis.


Assuntos
Amidas/administração & dosagem , Antiprotozoários/administração & dosagem , Compostos de Boro/administração & dosagem , Criptosporidiose/tratamento farmacológico , Isoxazóis/administração & dosagem , Amidas/efeitos adversos , Amidas/química , Animais , Antiprotozoários/efeitos adversos , Antiprotozoários/química , Compostos de Boro/efeitos adversos , Compostos de Boro/química , Criptosporidiose/parasitologia , Cryptosporidium/efeitos dos fármacos , Cryptosporidium/crescimento & desenvolvimento , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Isoxazóis/efeitos adversos , Isoxazóis/química , Masculino , Camundongos , Ratos
17.
Nat Commun ; 10(1): 1862, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015448

RESUMO

Cryptosporidiosis is a leading cause of life-threatening diarrhea in children, and the only currently approved drug is ineffective in malnourished children and immunocompromised people. Large-scale phenotypic screens are ongoing to identify anticryptosporidial compounds, but optimal approaches to prioritize inhibitors and establish a mechanistically diverse drug development pipeline are unknown. Here, we present a panel of medium-throughput mode of action assays that enable testing of compounds in several stages of the Cryptosporidium life cycle. Phenotypic profiles are given for thirty-nine anticryptosporidials. Using a clustering algorithm, the compounds sort by phenotypic profile into distinct groups of inhibitors that are either chemical analogs (i.e. same molecular mechanism of action (MMOA)) or known to have similar MMOA. Furthermore, compounds belonging to multiple phenotypic clusters are efficacious in a chronic mouse model of cryptosporidiosis. This suite of phenotypic assays should ensure a drug development pipeline with diverse MMOA without the need to identify underlying mechanisms.


Assuntos
Antiparasitários/farmacologia , Criptosporidiose/tratamento farmacológico , Cryptosporidium/efeitos dos fármacos , Diarreia/tratamento farmacológico , Inibidores do Crescimento/farmacologia , Algoritmos , Animais , Antiparasitários/uso terapêutico , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Análise por Conglomerados , Criptosporidiose/parasitologia , Cryptosporidium/crescimento & desenvolvimento , Diarreia/parasitologia , Modelos Animais de Doenças , Descoberta de Drogas/métodos , Inibidores do Crescimento/uso terapêutico , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Fenótipo
18.
J Infect Dis ; 220(2): 285-293, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893435

RESUMO

BACKGROUND: Cryptosporidiosis, an enteric protozoon, causes substantial morbidity and mortality associated with diarrhea in children <2 years old in low- to middle-income countries. There is no vaccine and treatments are inadequate. A piperazine-based compound, MMV665917, has in vitro and in vivo efficacy against Cryptosporidium parvum. In this study, we evaluated the efficacy of MMV665917 in gnotobiotic piglets experimentally infected with Cryptosporidium hominis, the species responsible for >75% of diarrhea reported in these children. METHODS: Gnotobiotic piglets were orally challenged with C hominis oocysts, and oral treatment with MMV665917 was commenced 3 days after challenge. Oocyst excretion and diarrhea severity were observed daily, and mucosal colonization and lesions were recorded after necropsy. RESULTS: MMV665917 significantly reduced fecal oocyst excretion, parasite colonization and damage to the intestinal mucosa, and peak diarrheal symptoms, compared with infected untreated controls. A dose of 20 mg/kg twice daily for 7 days was more effective than 10 mg/kg. There were no signs of organ toxicity at either dose, but 20 mg/kg was associated with slightly elevated blood cholesterol and monocytes at euthanasia. CONCLUSIONS: These results demonstrate the effectiveness of this drug against C hominis. Piperazine-derivative MMV665917 may potentially be used to treat human cryptosporidiosis; however, further investigations are required.


Assuntos
Criptosporidiose/tratamento farmacológico , Cryptosporidium parvum/efeitos dos fármacos , Diarreia/tratamento farmacológico , Piperazinas/farmacologia , Animais , Criptosporidiose/parasitologia , Diarreia/parasitologia , Modelos Animais de Doenças , Mucosa Intestinal/parasitologia , Monócitos/parasitologia , Oocistos/efeitos dos fármacos , Suínos
19.
Artigo em Inglês | MEDLINE | ID: mdl-30745384

RESUMO

Cryptosporidiosis is one of the leading causes of moderate to severe diarrhea in children in low-resource settings. The therapeutic options for cryptosporidiosis are limited to one drug, nitazoxanide, which unfortunately has poor activity in the most needy populations of malnourished children and HIV-infected persons. We describe here the discovery and early optimization of a class of imidazopyridine-containing compounds with potential for treating Cryptosporidium infections. The compounds target the Cryptosporidium methionyl-tRNA synthetase (MetRS), an enzyme that is essential for protein synthesis. The most potent compounds inhibited the enzyme with Ki values in the low picomolar range. Cryptosporidium cells in culture were potently inhibited with 50% effective concentrations as low as 7 nM and >1,000-fold selectivity over mammalian cells. A parasite persistence assay indicates that the compounds act by a parasiticidal mechanism. Several compounds were demonstrated to control infection in two murine models of cryptosporidiosis without evidence of toxicity. Pharmacological and physicochemical characteristics of compounds were investigated to determine properties that were associated with higher efficacy. The results indicate that MetRS inhibitors are excellent candidates for development for anticryptosporidiosis therapy.


Assuntos
Antiprotozoários/farmacologia , Criptosporidiose/tratamento farmacológico , Cryptosporidium parvum/efeitos dos fármacos , Imidazóis/farmacologia , Metionina tRNA Ligase/antagonistas & inibidores , Piridinas/farmacologia , Animais , Cryptosporidium parvum/genética , Ciclo-Oxigenase 1/efeitos dos fármacos , Modelos Animais de Doenças , Descoberta de Drogas/métodos , Feminino , Células Hep G2 , Humanos , Imidazóis/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Piridinas/química
20.
Artigo em Inglês | MEDLINE | ID: mdl-30559138

RESUMO

A series of 4-amino 2-anilinoquinazolines optimized for activity against the most lethal malaria parasite of humans, Plasmodium falciparum, was evaluated for activity against other human Plasmodium parasites and related apicomplexans that infect humans and animals. Four of the most promising compounds from the 4-amino 2-anilinoquinazoline series were equally as effective against the asexual blood stages of the zoonotic P. knowlesi, suggesting that they could also be effective against the closely related P. vivax, another important human pathogen. The 2-anilinoquinazoline compounds were also potent against an array of P. falciparum parasites resistant to clinically available antimalarial compounds, although slightly less so than against the drug-sensitive 3D7 parasite line. The apicomplexan parasites Toxoplasma gondii, Babesia bovis, and Cryptosporidium parvum were less sensitive to the 2-anilinoquinazoline series with a 50% effective concentration generally in the low micromolar range, suggesting that the yet to be discovered target of these compounds is absent or highly divergent in non-Plasmodium parasites. The 2-anilinoquinazoline compounds act as rapidly as chloroquine in vitro and when tested in rodents displayed a half-life that contributed to the compound's capacity to clear P. falciparum blood stages in a humanized mouse model. At a dose of 50 mg/kg of body weight, adverse effects to the humanized mice were noted, and evaluation against a panel of experimental high-risk off targets indicated some potential off-target activity. Further optimization of the 2-anilinoquinazoline antimalarial class will concentrate on improving in vivo efficacy and addressing adverse risk.


Assuntos
Compostos de Anilina/farmacologia , Antiparasitários/farmacologia , Babesia bovis/efeitos dos fármacos , Cryptosporidium parvum/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Quinazolinas/farmacologia , Toxoplasma/efeitos dos fármacos , Animais , Antimaláricos/farmacologia , Linhagem Celular , Cloroquina/farmacologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Testes de Sensibilidade Parasitária , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA