Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(1): 451-461, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38113512

RESUMO

With the mounting need for clean and renewable energy, catalysts for hydrogen production based on earth abundant elements are of great interest. Herein, we describe the synthesis, characterization, and catalytic activity of two nickel complexes based on the pyridinediimine ligand that possess basic nitrogen moieties of pyridine and imidazole that could potentially serve as pendent bases to enhance catalysis. Although these ligands have previously been reported to be complexed to some metal ions, they have not been applied to nickel. The nickel complex with the pendent pyridines was found to be the most active of the two, catalyzing proton reduction electrochemically with an overpotential of 490 mV. The appearance of a wave that preceded the Ni(I/0) redox couple in the presence of protons suggests that protonation of a dissociated pyridine was likely. Further evidence of this was provided with density functional theory calculations, and a mechanism of hydrogen production is proposed. Furthermore, in a light-driven system containing Ru(bpy)32+ and ascorbic acid, TON of 1400 were obtained.

2.
ACS Cent Sci ; 9(5): 927-936, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37252356

RESUMO

Surface immobilized catalysts are highly promising candidates for a range of energy conversion reactions, and atomistic mechanistic understanding is essential for their rational design. Cobalt tetraphenylporphyrin (CoTPP) nonspecifically adsorbed on a graphitic surface has been shown to undergo concerted proton-coupled electron transfer (PCET) in aqueous solution. Herein, density functional theory calculations on both cluster and periodic models representing π-stacked interactions or axial ligation to a surface oxygenate are performed. As the electrode surface is charged due to applied potential, the adsorbed molecule experiences the electrical polarization of the interface and nearly the same electrostatic potential as the electrode, regardless of the adsorption mode. PCET occurs by electron abstraction from the surface to the CoTPP concerted with protonation to form a cobalt hydride, thereby circumventing Co(II/I) redox. Specifically, the Co(II) d-state localized orbital interacts with a proton from solution and an electron from the delocalized graphitic band states to produce a Co(III)-H bonding orbital below the Fermi level, corresponding to redistribution of electrons from the band states to the bonding states. These insights have broad implications for electrocatalysis by chemically modified electrodes and surface immobilized catalysts.

3.
Nat Chem ; 15(2): 271-277, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36357789

RESUMO

Although the oxygen reduction reaction (ORR) involves multiple proton-coupled electron transfer processes, early studies reported the absence of kinetic isotope effects (KIEs) on polycrystalline platinum, probably due to the use of unpurified D2O. Here we developed a methodology to prepare ultra-pure D2O, which is indispensable for reliably investigating extremely surface-sensitive platinum single crystals. We find that Pt(111) exhibits much higher ORR activity in D2O than in H2O, with potential-dependent inverse KIEs of ~0.5, whereas Pt(100) and Pt(110) exhibit potential-independent inverse KIEs of ~0.8. Such inverse KIEs are closely correlated to the lower *OD coverage and weakened *OD binding strength relative to *OH, which, based on theoretical calculations, are attributed to the differences in their zero-point energies. This study suggests that the competing adsorption between *OH/*OD and *O2 probably plays an important role in the ORR rate-determining steps that involve a chemical step preceding an electrochemical step (CE mechanism).

4.
J Phys Chem Lett ; 13(48): 11216-11222, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36445816

RESUMO

Graphite-conjugated catalysts (GCCs) provide a powerful framework for investigating correlations between electronic structure features and chemical reactivity of single-site heterogeneous catalysts. GCC-phenazine undergoes proton-coupled electron transfer (PCET) involving protonation of phenazine at its two nitrogen atoms with the addition of two electrons. Herein, this PCET reaction is investigated in the presence of defects, such as heteroatom dopants, in the graphitic surface. The proton-coupled redox potentials, EPCET, are computed using a constant potential periodic density functional theory (DFT) strategy. The electronic states directly involved in PCET for GCC-phenazine exhibit the same nitrogen orbital character as those for molecular phenazine. The energy εLUS of this phenazine-related lowest unoccupied electronic state in GCC-phenazine is identified as a descriptor for changes in PCET thermodynamics. Importantly, εLUS is obtained from only a single DFT calculation but can predict EPCET, which requires many such calculations. Similar electronic features may be useful descriptors for thermodynamic properties of other single-site catalysts.


Assuntos
Grafite , Prótons , Elétrons , Teoria da Densidade Funcional , Nitrogênio
5.
J Am Chem Soc ; 144(36): 16524-16534, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36001092

RESUMO

The systematic improvement of Fe-N-C materials for fuel cell applications has proven challenging, due in part to an incomplete atomistic understanding of the oxygen reduction reaction (ORR) under electrochemical conditions. Herein, a multilevel computational approach, which combines ab initio molecular dynamics simulations and constant potential density functional theory calculations, is used to assess proton-coupled electron transfer (PCET) processes and adsorption thermodynamics of key ORR intermediates. These calculations indicate that the potential-limiting step for ORR on Fe-N-C materials is the formation of the FeIII-OOH intermediate. They also show that an active site model with a water molecule axially ligated to the iron center throughout the catalytic cycle produces results that are consistent with the experimental measurements. In particular, reliable prediction of the ORR onset potential and the Fe(III/II) redox potential associated with the conversion of FeIII-OH to FeII and desorbed H2O requires an axial H2O co-adsorbed to the iron center. The observation of a five-coordinate rather than four-coordinate active site has significant implications for the thermodynamics and mechanism of ORR. These findings highlight the importance of solvent-substrate interactions and surface charge effects for understanding the PCET reaction mechanisms and transition-metal redox couples under realistic electrochemical conditions.


Assuntos
Compostos Férricos , Ferro , Compostos Férricos/química , Ferro/química , Ligantes , Oxirredução , Oxigênio/química
6.
J Am Chem Soc ; 142(49): 20855-20864, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33231443

RESUMO

Interfacial proton-coupled electron transfer (PCET) reactions are central to the operation of a wide array of energy conversion technologies, but molecular-level insights into interfacial PCET are limited. At carbon surfaces, designer sites for interfacial PCET can be incorporated by conjugating organic acid functional groups to graphite edges though aromatic phenazine linkages. At these graphite-conjugated catalysts (GCCs) bearing organic acid moieties, PCET is driven by complex interfacial electrostatic and field gradients that are difficult to probe experimentally. Herein, the spatially inhomogeneous interfacial electrostatic potentials and electric fields of GCC organic acids are computed as functions of applied potential. The calculated proton-coupled redox potentials for the PCET reactions at the GCC phenazine bridges and organic acid sites are in agreement with cyclic voltammetry measurements for a series of GCC acids. The trends in these redox potentials are explained in terms of the acidity of the molecular analogues and continuous conjugation between the acid and the graphite surface. The calculations illustrate that this conjugation is interrupted in a GCC acetic acid system, providing an explanation for the absence of a cyclic voltammetry peak corresponding to PCET at this acid site. This combined theoretical and experimental study demonstrates the critical role of continuous conjugation and strong electronic coupling between the GCC acid site and the graphite to enable interfacial field-driven PCET at the acid site. Understanding the connection between the atomic structure of the surface and the interfacial electrostatic potentials and fields that govern PCET thermochemistry may guide heterogeneous catalyst design.


Assuntos
Ácidos Carboxílicos/química , Grafite/química , Catálise , Transporte de Elétrons , Oxirredução , Prótons , Eletricidade Estática , Termodinâmica
7.
Inorg Chem ; 59(1): 705-716, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31860297

RESUMO

A series of seven molybdenum(III) complexes with the general formula of [Mo(diimine)Cl4]- were synthesized and characterized by X-ray diffraction, IR, cyclic voltammetry (CV), and UV-vis. The complexes were discovered to be highly solvatochromic, showing shifts in λmax between ∼120 and 170 nm in solvents ranging from water to acetone. Varying the substituents on the diimine ligand influenced the absorption energy such that electron-withdrawing groups induced a red shift while electron-donating groups exhibited the opposite effect. The complexes were surprisingly stable in both acidic and basic solutions, and in the case where carboxylic acid substituents were present, additional shifts in the absorption maxima were observed, corresponding to the state of protonation of these groups. Both the MoIV/III and MoIII/II redox couples were observed in CV experiments and were complemented with density functional theory (DFT) calculations.

8.
Opt Express ; 27(26): 37374-37382, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878519

RESUMO

Ultrashort laser pulses that last only a few optical cycles have been transformative tools for studying and manipulating light-matter interactions. Few-cycle pulses are typically produced from high-peak-power lasers, either directly from a laser oscillator or through nonlinear effects in bulk or fiber materials. Now, an opportunity exists to explore the few-cycle regime with the emergence of fully integrated nonlinear photonics. Here, we experimentally and numerically demonstrate how lithographically patterned waveguides can be used to generate few-cycle laser pulses from an input seed pulse. Moreover, our work explores a design principle in which lithographically varying the group-velocity dispersion in a waveguide enables the creation of highly constant-intensity supercontinuum spectra across an octave of bandwidth. An integrated source of few-cycle pulses could broaden the range of applications for ultrafast light sources, including supporting new lab-on-a-chip systems in a scalable form factor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA