Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
PLoS One ; 18(3): e0281446, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36928833

RESUMO

BACKGROUND AND OBJECTIVES: Blast-induced lung injury is associated with inflammatory, which are characterised by disruption of the alveolar-capillary barrier, haemorrhage, pulmonary infiltrateration causing oedema formation, pro-inflammatory cytokine and chemokine release, and anti-inflammatory counter-regulation. The objective of the current study was to define sequence of such alterations in with establishing blast-induced lung injury in rats using an advanced blast generator. METHODS: Rats underwent a standardized blast wave trauma and were euthanised at defined time points. Non-traumatised animals served as sham controls. Obtained samples from bronchoalveolar lavage fluid (BALF) at each time-point were assessed for histology, leukocyte infiltration and cytokine/chemokine profile. RESULTS: After blast lung injury, significant haemorrhage and neutrophil infiltration were observed. Similarly, protein accumulation, lactate dehydrogenase activity (LDH), alveolar eicosanoid release, matrix metalloproteinase (MMP)-2 and -9, pro-Inflammatory cytokines, including tumour necrosis factor (TNF) and interleukin (IL) -6 raised up. While declining in the level of anti-inflammatory cytokine IL-10 occurred. Ultimately, pulmonary oedema developed that increased to its maximum level within the first 1.5 h, then recovered within 24 h. CONCLUSION: Using a stablished model, can facilitate the study of inflammatory response to blast lung injury. Following the blast injury, alteration in cytokine/chemokine profile and activity of cells in the alveolar space occurs, which eventuates in alveolar epithelial barrier dysfunction and oedema formation. Most of these parameters exhibit time-dependent return to their basal status that is an indication to resilience of lungs to blast-induced lung injury.


Assuntos
Lesão Pulmonar , Edema Pulmonar , Ratos , Animais , Lesão Pulmonar/etiologia , Citocinas , Pulmão/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6 , Edema
2.
Biomedicines ; 10(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36428498

RESUMO

Objective: Current treatments for blast-induced lung injury are limited to supportive procedures including mechanical ventilation. The study aimed to investigate the role of post-trauma-induced oedema generation in the function of time and trauma intensity and the probable role of beta 2-adrenergic receptors (ß2-ARs) agonists on pulmonary oedema. The study is conducted using an ex vivo model after an experimental in vivo blast-induced thorax trauma in rats. Methods: Rats were randomised and divided into two groups, blast and sham. The blast group were anaesthetised and exposed to the blast wave (3.16 ± 0.43 bar) at a distance of 3.5 cm from the thorax level. The rats were sacrificed 10 min after the blast, the lungs explanted and treated with terbutaline, formoterol, propranolol or amiloride to assess the involvement of sodium transport. Other groups of rats were exposed to distances of 5 and 7 cm from the thorax to reduce the intensity of the injury. Further, one group of rats was studied after 180 min and one after 360 min after a 3.5 cm blast injury. Sham controls were exposed to identical procedures except for receiving blast overpressure. Results: Lung injury and oedema generation depended on time after injury and injury intensity. Perfusion with amiloride resulted in a further increase in oedema formation as indicated by weight gain (p < 0.001), diminished tidal volume (Tv) (p < 0.001), and increased airway resistance (p < 0.001). Formoterol caused a significant increase in the Tv (p < 0.001) and a significant decrease in the airway resistance (p < 0.01), while the lung weight was not influenced. Trauma-related oedema was significantly reduced by terbutaline in terms of lung weight gain (p < 0.01), Tv (p < 0.001), and airway resistance (p < 0.01) compared to control blast-injured lungs. Terbutaline-induced effects were completely blocked by the ß-receptor antagonist propranolol (p < 0.05). Similarly, amiloride, which was added to terbutaline perfusion, reversed terbutaline-induced weight gain reduction (p < 0.05). Conclusions: ß2-adrenoceptor stimulation had a beneficial impact by amiloride-dependent sodium and therefore, fluid transport mechanisms on the short-term ex vivo oedema generation in a trauma-induced in vivo lung injury of rats.

3.
Adv Healthc Mater ; 11(11): e2102117, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35112802

RESUMO

Nontuberculous mycobacterial infections rapidly emerge and demand potent medications to cope with resistance. In this context, targeted loco-regional delivery of aerosol medicines to the lungs is an advantage. However, sufficient antibiotic delivery requires engineered aerosols for optimized deposition. Here, the effect of bedaquiline-encapsulating fucosylated versus nonfucosylated liposomes on cellular uptake and delivery is investigated. Notably, this comparison includes critical parameters for pulmonary delivery, i.e., aerosol deposition and the noncellular barriers of pulmonary surfactant (PS) and mucus. Targeting increases liposomal uptake into THP-1 cells as well as peripheral blood monocyte- and lung-tissue derived macrophages. Aerosol deposition in the presence of PS, however, masks the effect of active targeting. PS alters antibiotic release that depends on the drug's hydrophobicity, while mucus reduces the mobility of nontargeted more than fucosylated liposomes. Dry-powder microparticles of spray-dried bedaquiline-loaded liposomes display a high fine particle fraction of >70%, as well as preserved liposomal integrity and targeting function. The antibiotic effect is maintained when deposited as powder aerosol on cultured Mycobacterium abscessus. When treating M. abscessus infected THP-1 cells, the fucosylated variant enabled enhanced bacterial killing, thus opening up a clear perspective for the improved treatment of nontuberculous mycobacterial infections.


Assuntos
Antibacterianos , Lipossomos , Administração por Inalação , Aerossóis , Antibacterianos/farmacologia , Inaladores de Pó Seco , Fucose , Pulmão , Macrófagos , Tamanho da Partícula , Pós
4.
EBioMedicine ; 72: 103578, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34571364

RESUMO

BACKGROUND: Based on reports on elevated cholesterol levels in cancer cells, strategies to lower cholesterol synthesis have been suggested as an antitumour strategy. However, cholesterol depletion has also been shown to induce tumour-promoting actions in tumour-associated macrophages (TAMs). METHODS: We performed lipidomic and transcriptomic analyses of human lung cancer material. To assess whether the TAM phenotype is shaped by secreted factors produced by tumour cells, primary human monocyte-derived macrophages were polarized towards a TAM-like phenotype using tumour cell-conditioned medium. FINDINGS: Lipidomic analysis of lung adenocarcinoma (n=29) and adjacent non-tumour tissues (n=22) revealed a significant accumulation of free cholesterol and cholesteryl esters within the tumour tissue. In contrast, cholesterol levels were reduced in TAMs isolated from lung adenocarcinoma tissues when compared with alveolar macrophages (AMs) obtained from adjacent non-tumour tissues. Bulk-RNA-Seq revealed that genes involved in cholesterol biosynthesis and metabolism were downregulated in TAMs, while cholesterol efflux transporters were upregulated. In vitro polarized TAM-like macrophages showed an attenuated lipogenic gene expression signature and exhibited lower cholesterol levels compared with non-polarized macrophages. A genome-wide comparison by bulk RNA-Seq confirmed a high similarity of ex vivo TAMs and in vitro TAM-like macrophages. Modulation of intracellular cholesterol levels by either starving, cholesterol depletion, or efflux transporter inhibition indicated that cholesterol distinctly shapes macrophage gene expression. INTERPRETATION: Our data show an opposite dysregulation of cholesterol homeostasis in tumour tissue vs. TAMs. Polarization of in vitro differentiated macrophages by tumour cell-conditioned medium recapitulates key features of ex vivo TAMs. FUNDING: Deutsche Forschungsgemeinschaft (DFG), Landesforschungsf €orderungsprogramm Saarland (LFPP).


Assuntos
Colesterol/genética , Homeostase/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Macrófagos Associados a Tumor/patologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Linhagem Celular Tumoral , Expressão Gênica/genética , Humanos , Microambiente Tumoral/genética
5.
Commun Biol ; 4(1): 168, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547387

RESUMO

The air-blood barrier with its complex architecture and dynamic environment is difficult to mimic in vitro. Lung-on-a-chips enable mimicking the breathing movements using a thin, stretchable PDMS membrane. However, they fail to reproduce the characteristic alveoli network as well as the biochemical and physical properties of the alveolar basal membrane. Here, we present a lung-on-a-chip, based on a biological, stretchable and biodegradable membrane made of collagen and elastin, that emulates an array of tiny alveoli with in vivo-like dimensions. This membrane outperforms PDMS in many ways: it does not absorb rhodamine-B, is biodegradable, is created by a simple method, and can easily be tuned to modify its thickness, composition and stiffness. The air-blood barrier is reconstituted using primary lung alveolar epithelial cells from patients and primary lung endothelial cells. Typical alveolar epithelial cell markers are expressed, while the barrier properties are preserved for up to 3 weeks.


Assuntos
Elasticidade/fisiologia , Dispositivos Lab-On-A-Chip , Pulmão/citologia , Membranas Artificiais , Alvéolos Pulmonares/fisiologia , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/fisiologia , Barreira Alveolocapilar/citologia , Barreira Alveolocapilar/fisiologia , Comunicação Celular/fisiologia , Permeabilidade da Membrana Celular/fisiologia , Técnicas de Cocultura/instrumentação , Técnicas de Cocultura/métodos , Humanos , Pulmão/fisiologia , Microtecnologia , Cultura Primária de Células/instrumentação , Cultura Primária de Células/métodos , Alvéolos Pulmonares/citologia , Estresse Mecânico , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Alicerces Teciduais/química
6.
Front Bioeng Biotechnol ; 8: 1030, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015009

RESUMO

Multidrug resistance-associated protein-1 (MRP1/ABCC1) is highly expressed in human lung tissues. Recent studies suggest that it significantly affects the pulmonary disposition of its substrates, both after pulmonary and systemic administration. To better understand the molecular mechanisms involved, we studied the expression, subcellular localization and activity of MRP1 in freshly isolated human alveolar epithelial type 2 (AT2) and type 1-like (AT1-like) cells in primary culture, and in the NCI-H441 cell line. Moreover, the effect of cigarette smoke extract (CSE) and a series of inhaled drugs on MRP1 abundance and activity was investigated in vitro. MRP1 expression levels were measured by q-PCR and immunoblot in AT2 and AT1-like cells from different donors and in several passages of the NCI-H441 cell line. The subcellular localization of the transporter was studied by confocal laser scanning microscopy and cell surface protein biotinylation. MRP1 activity was assessed by bidirectional transport and efflux experiments using the MRP1 substrate, 5(6)-carboxyfluorescein [CF; formed intracellularly from 5(6)-carboxyfluorescein-diacetate (CFDA)] in AT1-like and NCI-H441 cell monolayers. Furthermore, the effect of CSE as well as several bronchodilators and inhaled corticosteroids on MRP1 abundance and CF efflux was investigated. MRP1 protein abundance increased upon differentiation from AT2 to AT1-like phenotype, however, ABCC1 gene levels remained unchanged. MRP1 abundance in NCI-H441 cells were comparable to those found in AT1-like cells. The transporter was detected primarily in basolateral membranes of both cell types which was consistent with net basolateral efflux of CF. Likewise, bidirectional transport studies showed net apical-to-basolateral transport of CF which was sensitive to the MRP1 inhibitor MK-571. Budesonide, beclomethasone dipropionate, salbutamol sulfate, and CSE decreased CF efflux in a concentration-dependent manner. Interestingly, CSE increased MRP1 abundance, whereas budesonide, beclomethasone dipropionate, salbutamol sulfate did not have such effect. CSE and inhaled drugs can reduce MRP1 activity in vitro, which implies the transporter being a potential drug target in the treatment of chronic obstructive pulmonary disease (COPD). Moreover, MRP1 expression level, localization and activity were comparable in human AT1-like and NCI-H441 cells. Therefore, the cell line can be a useful alternative in vitro model to study MRP1 in distal lung epithelium.

7.
Thorac Cardiovasc Surg Rep ; 9(1): e37-e39, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32974118

RESUMO

Anomalous venous connections of the left lung can either affect all of the veins or only the upper lobe. They mostly drain into the innominate vein. We present the case of a patient who underwent a coronary bypass operation and was prepared with insertion of central lines including Swan-Ganz catheter through both the internal jugular veins. Blood gas analysis obtained from these catheters suggested the presence of a left-to-right shunt. CT (computed tomography) imaging confirmed a pulmonary venous anomaly with misplacement of the left-sided catheter in an abnormal pulmonary vein. Such a rare condition can be suspected by obtaining arterialized blood samples and measuring the mean pressure through central catheters.

8.
Toxins (Basel) ; 12(4)2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252376

RESUMO

Bacterial toxins play a key role in the pathogenesis of lung disease. Based on their structural and functional properties, they employ various strategies to modulate lung barrier function and to impair host defense in order to promote infection. Although in general, these toxins target common cellular signaling pathways and host compartments, toxin- and cell-specific effects have also been reported. Toxins can affect resident pulmonary cells involved in alveolar fluid clearance (AFC) and barrier function through impairing vectorial Na+ transport and through cytoskeletal collapse, as such, destroying cell-cell adhesions. The resulting loss of alveolar-capillary barrier integrity and fluid clearance capacity will induce capillary leak and foster edema formation, which will in turn impair gas exchange and endanger the survival of the host. Toxins modulate or neutralize protective host cell mechanisms of both the innate and adaptive immunity response during chronic infection. In particular, toxins can either recruit or kill central players of the lung's innate immune responses to pathogenic attacks, i.e., alveolar macrophages (AMs) and neutrophils. Pulmonary disorders resulting from these toxin actions include, e.g., acute lung injury (ALI), the acute respiratory syndrome (ARDS), and severe pneumonia. When acute infection converts to persistence, i.e., colonization and chronic infection, lung diseases, such as bronchitis, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) can arise. The aim of this review is to discuss the impact of bacterial toxins in the lungs and the resulting outcomes for pathogenesis, their roles in promoting bacterial dissemination, and bacterial survival in disease progression.


Assuntos
Bactérias/patogenicidade , Infecções Bacterianas/microbiologia , Toxinas Bacterianas/metabolismo , Pulmão/microbiologia , Infecções Respiratórias/microbiologia , Imunidade Adaptativa , Animais , Bactérias/imunologia , Bactérias/metabolismo , Infecções Bacterianas/imunologia , Infecções Bacterianas/metabolismo , Infecções Bacterianas/patologia , Progressão da Doença , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/metabolismo , Infecções Respiratórias/patologia , Transdução de Sinais
9.
JAMA Oncol ; 6(5): 714-723, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32134442

RESUMO

Importance: The overall low survival rate of patients with lung cancer calls for improved detection tools to enable better treatment options and improved patient outcomes. Multivariable molecular signatures, such as blood-borne microRNA (miRNA) signatures, may have high rates of sensitivity and specificity but require additional studies with large cohorts and standardized measurements to confirm the generalizability of miRNA signatures. Objective: To investigate the use of blood-borne miRNAs as potential circulating markers for detecting lung cancer in an extended cohort of symptomatic patients and control participants. Design, Setting, and Participants: This multicenter, cohort study included patients from case-control and cohort studies (TREND and COSYCONET) with 3102 patients being enrolled by convenience sampling between March 3, 2009, and March 19, 2018. For the cohort study TREND, population sampling was performed. Clinical diagnoses were obtained for 3046 patients (606 patients with non-small cell and small cell lung cancer, 593 patients with nontumor lung diseases, 883 patients with diseases not affecting the lung, and 964 unaffected control participants). No samples were removed because of experimental issues. The collected data were analyzed between April 2018 and November 2019. Main Outcomes and Measures: Sensitivity and specificity of liquid biopsy using miRNA signatures for detection of lung cancer. Results: A total of 3102 patients with a mean (SD) age of 61.1 (16.2) years were enrolled. Data on the sex of the participants were available for 2856 participants; 1727 (60.5%) were men. Genome-wide miRNA profiles of blood samples from 3046 individuals were evaluated by machine-learning methods. Three classification scenarios were investigated by splitting the samples equally into training and validation sets. First, a 15-miRNA signature from the training set was used to distinguish patients diagnosed with lung cancer from all other individuals in the validation set with an accuracy of 91.4% (95% CI, 91.0%-91.9%), a sensitivity of 82.8% (95% CI, 81.5%-84.1%), and a specificity of 93.5% (95% CI, 93.2%-93.8%). Second, a 14-miRNA signature from the training set was used to distinguish patients with lung cancer from patients with nontumor lung diseases in the validation set with an accuracy of 92.5% (95% CI, 92.1%-92.9%), sensitivity of 96.4% (95% CI, 95.9%-96.9%), and specificity of 88.6% (95% CI, 88.1%-89.2%). Third, a 14-miRNA signature from the training set was used to distinguish patients with early-stage lung cancer from all individuals without lung cancer in the validation set with an accuracy of 95.9% (95% CI, 95.7%-96.2%), sensitivity of 76.3% (95% CI, 74.5%-78.0%), and specificity of 97.5% (95% CI, 97.2%-97.7%). Conclusions and Relevance: The findings of the study suggest that the identified patterns of miRNAs may be used as a component of a minimally invasive lung cancer test, complementing imaging, sputum cytology, and biopsy tests.


Assuntos
MicroRNA Circulante/genética , Neoplasias Pulmonares/genética , Estudos de Coortes , Feminino , Humanos , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Taxa de Sobrevida
10.
Front Immunol ; 10: 1634, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396208

RESUMO

Glucocorticoids (GCs) are widely prescribed therapeutics for the treatment of inflammatory diseases, and endogenous GCs play a key role in immune regulation. Toll-like receptors (TLRs) enable innate immune cells, such as macrophages, to recognize a wide variety of microbial ligands, thereby promoting inflammation. The interaction of GCs with macrophages in the immunosuppressive resolution phase upon prolonged TLR activation is widely unknown. Treatment of human alveolar macrophages (AMs) with the synthetic GC dexamethasone (Dex) did not alter the expression of TLRs -1, -4, and -6. In contrast, TLR2 was upregulated in a GC receptor-dependent manner, as shown by Western blot and qPCR. Furthermore, long-term lipopolysaccharide (LPS) exposure mimicking immunosuppression in the resolution phase of inflammation synergistically increased Dex-mediated TLR2 upregulation. Analyses of publicly available datasets suggested that TLR2 is induced during the resolution phase of inflammatory diseases, i.e., under conditions associated with high endogenous GC production. TLR2 induction did not enhance TLR2 signaling, as indicated by reduced cytokine production after treatment with TLR2 ligands in Dex- and/or LPS-primed AMs. Thus, we hypothesized that the upregulated membrane-bound TLR2 might serve as a precursor for soluble TLR2 (sTLR2), known to antagonize TLR2-dependent cell actions. Supernatants of LPS/Dex-primed macrophages contained sTLR2, as demonstrated by Western blot analysis. Activation of metalloproteinases resulted in enhanced sTLR2 shedding. Additionally, we detected full-length TLR2 and assumed that this might be due to the production of TLR2-containing extracellular vesicles (EVs). EVs from macrophage supernatants were isolated by sequential centrifugation. Both untreated and LPS/Dex-treated cells produced vesicles of various sizes and shapes, as shown by cryo-transmission electron microscopy. These vesicles were identified as the source of full-length TLR2 in macrophage supernatants by Western blot and mass spectrometry. Flow cytometric analysis indicated that TLR2-containing EVs were able to bind the TLR2 ligand Pam3CSK4. In addition, the presence of EVs reduced inflammatory responses in Pam3CSK4-treated endothelial cells and HEK Dual reporter cells, demonstrating that TLR2-EVs can act as decoy receptors. In summary, our data show that sTLR2 and full-length TLR2 are released by macrophages under anti-inflammatory conditions, which may contribute to GC-induced immunosuppression.


Assuntos
Glucocorticoides/farmacologia , Tolerância Imunológica/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos Alveolares/imunologia , Receptor 2 Toll-Like/imunologia , Dexametasona/farmacologia , Humanos , Imunossupressores/farmacologia , Lipopolissacarídeos/imunologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Receptor 2 Toll-Like/efeitos dos fármacos , Receptor 2 Toll-Like/metabolismo
11.
Pharmaceutics ; 11(8)2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31394757

RESUMO

The carnitine transporter OCTN2 is associated with asthma and other inflammatory diseases. The aims of this work were (i) to determine carnitine uptake into freshly isolated human alveolar type I (ATI)-like epithelial cells in primary culture, (ii) to compare the kinetics of carnitine uptake between respiratory epithelial in vitro cell models, and (iii) to establish whether any cell line was a suitable model for studies of carnitine transport at the air-blood barrier. Levels of time-dependent [3H]-acetyl-l-carnitine uptake were similar in ATI-like, NCl-H441, and Calu-3 epithelial cells, whereas uptake into A549 cells was ~5 times higher. Uptake inhibition was more pronounced by OCTN2 modulators, such as l-Carnitine and verapamil, in ATI-like primary epithelial cells compared to NCl-H441 and Calu-3 epithelial cells. Our findings suggest that OCTN2 is involved in the cellular uptake of acetyl-l-carnitine at the alveolar epithelium and that none of the tested cell lines are optimal surrogates for primary cells.

12.
Thorac Cardiovasc Surg Rep ; 8(1): e11-e13, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31065508

RESUMO

Background Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is a very useful diagnostic tool for the assessment of enlarged mediastinal and hilar lymph nodes. It is a safe procedure with a low risk of complications. Case Description We report a case of bronchial fistula and pneumomediastinum after EBUS-TBNA, which was performed shortly after a mediastinoscopy. Due to the extent of the bronchial lesion, a surgical closure of the bronchial fistula was necessary. The patient recovered completely. Conclusion The performance of EBUS-TBNA shortly after a mediastinoscopy should not be recommended to avoid possible procedure-related complications.

13.
J Biophotonics ; 12(6): e201800052, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30597770

RESUMO

Alveolar type II (ATII) cells in the peripheral human lung spontaneously differentiate toward ATI cells, thus enabling air-blood barrier formation. Here, linear Raman and coherent anti-Stokes Raman scattering (CARS) microscopy are applied to study cell differentiation of freshly isolated ATII cells. The Raman spectra can successfully be correlated with gradual morphological and molecular changes during cell differentiation. Alveolar surfactant rich vesicles in ATII cells are identified based on phospholipid vibrations, while ATI-like cells are characterized by the absence of vesicular structures. Complementary, CARS microscopy allows for three-dimensional visualization of lipid vesicles within ATII cells and their secretion, while hyperspectral CARS enables the distinction between cellular proteins and lipids according to their vibrational signatures. This study paves the path for further label-free investigations of lung cells and the role of the pulmonary surfactant, thus also providing a basis for rational development of future lung therapeutics.


Assuntos
Diferenciação Celular , Células Epiteliais/citologia , Microscopia , Alvéolos Pulmonares/citologia , Análise Espectral Raman , Vibração , Humanos
14.
RNA Biol ; 16(1): 93-103, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30567465

RESUMO

The validation of microRNAs (miRNAs) identified by next generation sequencing involves amplification-free and hybridization-based detection of transcripts as criteria for confirming valid miRNAs. Since respective validation is frequently not performed, miRNA repositories likely still contain a substantial fraction of false positive candidates while true miRNAs are not stored in the repositories yet. Especially if downstream analyses are performed with these candidates (e.g. target or pathway prediction), the results may be misleading. In the present study, we evaluated 558 mature miRNAs from miRBase and 1,709 miRNA candidates from next generation sequencing experiments by amplification-free hybridization and investigated their distributions in patients with various disease conditions. Notably, the most significant miRNAs in diseases are often not contained in the miRBase. However, these candidates are evolutionary highly conserved. From the expression patterns, target gene and pathway analyses and evolutionary conservation analyses, we were able to shed light on the complexity of miRNAs in humans. Our data also highlight that a more thorough validation of miRNAs identified by next generation sequencing is required. The results are available in miRCarta ( https://mircarta.cs.uni-saarland.de ).


Assuntos
Regulação da Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , MicroRNAs/genética , Interferência de RNA , Linhagem Celular , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Reprodutibilidade dos Testes , Análise de Sequência de RNA
15.
Sci Rep ; 8(1): 14359, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30254327

RESUMO

Organs-on-chips have the potential to improve drug development efficiency and decrease the need for animal testing. For the successful integration of these devices in research and industry, they must reproduce in vivo contexts as closely as possible and be easy to use. Here, we describe a 'breathing' lung-on-chip array equipped with a passive medium exchange mechanism that provide an in vivo-like environment to primary human lung alveolar cells (hAEpCs) and primary lung endothelial cells. This configuration allows the preservation of the phenotype and the function of hAEpCs for several days, the conservation of the epithelial barrier functionality, while enabling simple sampling of the supernatant from the basal chamber. In addition, the chip design increases experimental throughput and enables trans-epithelial electrical resistance measurements using standard equipment. Biological validation revealed that human primary alveolar type I (ATI) and type II-like (ATII) epithelial cells could be successfully cultured on the chip over multiple days. Moreover, the effect of the physiological cyclic strain showed that the epithelial barrier permeability was significantly affected. Long-term co-culture of primary human lung epithelial and endothelial cells demonstrated the potential of the lung-on-chip array for reproducible cell culture under physiological conditions. Thus, this breathing lung-on-chip array, in combination with patients' primary ATI, ATII, and lung endothelial cells, has the potential to become a valuable tool for lung research, drug discovery and precision medicine.


Assuntos
Alvéolos Pulmonares/citologia , Respiração , Análise Serial de Tecidos/métodos , Células Epiteliais/citologia , Desenho de Equipamento , Humanos , Alvéolos Pulmonares/fisiologia , Reprodutibilidade dos Testes , Análise Serial de Tecidos/instrumentação
16.
Front Immunol ; 9: 3111, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30723476

RESUMO

Activation of toll-like receptors (TLRs) plays a pivotal role in the host defense against bacteria and results in the activation of NF-κB-mediated transcription of proinflammatory mediators. Glucocorticoid-induced leucine zipper (GILZ) is an anti-inflammatory mediator, which inhibits NF-κB activity in macrophages. Thus, we aimed to investigate the regulation and role of GILZ expression in primary human and murine macrophages upon TLR activation. Treatment with TLR agonists, e.g., Pam3CSK4 (TLR1/2) or LPS (TLR4) rapidly decreased GILZ mRNA and protein levels. In consequence, GILZ downregulation led to enhanced induction of pro-inflammatory mediators, increased phagocytic activity, and a higher capacity to kill intracellular bacteria (Salmonella enterica serovar typhimurium), as shown in GILZ knockout macrophages. Treatment with the TLR3 ligand polyinosinic: polycytidylic acid [Poly(I:C)] did not affect GILZ mRNA levels, although GILZ protein expression was decreased. This effect was paralleled by sensitization toward TLR1/2- and TLR4-agonists. A bioinformatics approach implicated more than 250 miRNAs as potential GILZ regulators. Microarray analysis revealed that the expression of several potentially GILZ-targeting miRNAs was increased after Poly(I:C) treatment in primary human macrophages. We tested the ability of 11 of these miRNAs to target GILZ by luciferase reporter gene assays. Within this small set, four miRNAs (hsa-miR-34b*,-222,-320d,-484) were confirmed as GILZ regulators, suggesting that GILZ downregulation upon TLR3 activation is a consequence of the synergistic actions of multiple miRNAs. In summary, our data show that GILZ downregulation promotes macrophage activation. GILZ downregulation occurs both via MyD88-dependent and -independent mechanisms and can involve decreased mRNA or protein stability and an attenuated translation.


Assuntos
Macrófagos/imunologia , Infecções por Salmonella/imunologia , Receptores Toll-Like/metabolismo , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Linhagem Celular Tumoral , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Ativação de Macrófagos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Fagocitose/imunologia , Poli I-C/farmacologia , Cultura Primária de Células , Infecções por Salmonella/microbiologia , Salmonella typhimurium/imunologia , Receptores Toll-Like/agonistas , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Regulação para Cima/imunologia
17.
Pharm Res ; 34(12): 2477-2487, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28470471

RESUMO

PURPOSE: Breast cancer resistance protein (BCRP/ABCG2) has previously been identified with high expression levels in human lung. The subcellular localisation and functional activity of the transporter in lung epithelia, however, remains poorly investigated. The aim of this project was to study BCRP expression and activity in freshly isolated human alveolar epithelial type 2 (AT2) and type 1-like (AT1-like) cells in primary culture, and to compare these findings with data obtained from the NCI-H441 cell line. METHODS: BCRP expression levels in AT2 and AT1-like cells and in different passages of NCI-H441 cells were determined using q-PCR and immunoblot. Transporter localisation was confirmed by confocal laser scanning microscopy. Efflux and transport studies using the BCRP substrate BODIPY FL prazosin and the inhibitor Ko143 were carried out to assess BCRP activity in the different cell models. RESULTS: BCRP expression decreased during transdifferentiation from AT2 to AT1-like phenotype. Culturing NCI-H441 cells at an air-liquid interface or submersed did not change BCRP abundance, however, BCRP levels increased with passage number. BCRP was localised to the apical membrane and cytosol in NCI-H441 cells. In primary cells, the protein was found predominantly in the nucleus. Functional studies were consistent with expression data. CONCLUSIONS: BCRP is differently expressed in AT2 and AT1-like cells with lower abundance and activity in the latter ones. Nuclear BCRP might play a transcriptional role in distal lung epithelium. In NCI-H441 cells, BCRP is expressed in apical cell membranes and its activity is consistent with the localisation pattern.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/análise , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Células Epiteliais Alveolares/citologia , Pulmão/citologia , Proteínas de Neoplasias/análise , Proteínas de Neoplasias/metabolismo , Mucosa Respiratória/citologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Células Epiteliais Alveolares/metabolismo , Transporte Biológico , Linhagem Celular , Transdiferenciação Celular , Células Cultivadas , Expressão Gênica , Humanos , Pulmão/metabolismo , Proteínas de Neoplasias/genética , Mucosa Respiratória/metabolismo
18.
Altern Lab Anim ; 44(4): 337-347, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27685185

RESUMO

The development of new formulations for pulmonary drug delivery is a challenge on its own. New in vitro models which address the lung are aimed at predicting and optimising the quality, efficacy and safety of inhaled drugs, to facilitate the more rapid translation of such products into the clinic. Reducing the complexity of the in vivo situation requires that such models reproducibly reflect essential physiological factors in vitro. The choice of cell types, culture conditions and the experimental set-up, can affect the outcome and the relevance of a study. In the alveolar space of the lung, epithelial cells and alveolar macrophages are the most important cell types, forming an efficient cellular barrier to aerosols. Our aim was to mimic this barrier with primary human alveolar cells. Cell densities of alveolar macrophages and epithelial cells, isolated from the same human donor, were optimised, with a focus on barrier properties. The combination of 300,000 epithelial cells/cm² together with 100,000 macrophages/cm² showed a functional barrier (transepithelial electrical resistance > 500Ω.cm²). This cell model was combined with the Pharmaceutical Aerosol Deposition Device on Cell Cultures. The functionality of the in vitro system was investigated with spray-dried fluorescently labelled poly(lactic-co-glycolic) acid particles loaded with ovalbumin as a model drug.


Assuntos
Aerossóis/farmacologia , Células Epiteliais/fisiologia , Macrófagos Alveolares/fisiologia , Aerossóis/administração & dosagem , Alternativas aos Testes com Animais , Técnicas de Cocultura , Células Epiteliais/efeitos dos fármacos , Humanos , Ácido Láctico , Macrófagos Alveolares/efeitos dos fármacos , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
19.
Altern Lab Anim ; 44(4): 349-360, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27685186

RESUMO

Acute respiratory distress syndrome is linked to inflammatory processes in the human lung. The aim of this study was to mimic in vitro the treatment of lung inflammation by using a cell-based human autologous co-culture model. As a potential trial medication, we developed a pulmonary dry powder formulation loaded with interleukin-10 (IL-10), a potent anti-inflammatory cytokine. The inflammatory immune response was stimulated by lipopolysaccharide. The co-culture was combined with the Pharmaceutical Aerosol Deposition Device on Cell Cultures )PADDOCC), to deposit the IL-10-loaded microparticles on the inflamed co-culture model at the air-liquid interface. This treatment significantly reduced the secretion of interleukin-6 and tumour necrosis factor, as compared to the deposition of placebo (unloaded) particles. Our results show that the alveolar co-culture model, in combination with a deposition device such as the PADDOCC, may serve as a powerful tool for testing the safety and efficacy of dry powder formulations for pulmonary drug delivery.


Assuntos
Aerossóis/farmacologia , Células Epiteliais/fisiologia , Interleucina-10/farmacologia , Macrófagos Alveolares/fisiologia , Testes de Toxicidade/métodos , Alternativas aos Testes com Animais , Técnicas de Cocultura , Citocinas/genética , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Pneumopatias/tratamento farmacológico , Macrófagos Alveolares/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Nanopartículas
20.
Oncotarget ; 7(44): 71514-71525, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27588394

RESUMO

High-throughput omics analyses are applied to elucidate molecular pathogenic mechanisms in cancer. Given restricted cohort sizes and contrasting large feature sets paired multi-omics analysis supports discovery of true positive deregulated signaling cascades. For lung cancer patients we measured from the same tissue biopsies proteomic- (6,183 proteins), transcriptomic- (34,687 genes) and miRNomic data (2,549 miRNAs). To minimize inter-individual variations case and control lung biopsies have been gathered from the same individuals.Considering single omics entities, 15 of 2,549 miRNAs (0.6%), 752 of 34,687 genes (2.2%) and 141 of 6,183 proteins (2.3%) were significantly deregulated. Multivariate analysis also revealed that effects in miRNA were smaller compared to genes and proteins indicating that expression changes of miRNAs might also have limited impact of pathogenicity. However, a new algorithm for modeling the complex mutual interactions of miRNAs and their target genes facilitated precise prediction of deregulation in cancer genes (92.3% accuracy, p=0.007). Lastly, deregulation of genes in cancer matched deregulation of proteins coded by the genes in 80% of cases.The resulting interaction network, which is based on quantitative analysis of the abundance of miRNAs, mRNAs and proteins each taken from the same lung cancer tissue and from the same autologous normal lung tissue confirms molecular pathological changes and further contributes to the discovery of altered signaling cascades in lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , MicroRNAs/análise , Proteômica/métodos , Transdução de Sinais/fisiologia , Transcriptoma , Regulação Neoplásica da Expressão Gênica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA