Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538716

RESUMO

Refractory wounds are a severe complication of diabetes mellitus that often leads to amputation because of the lack of effective treatments and therapeutic targets. The pathogenesis of refractory wounds is complex, involving many types of cells. Rho-associated protein kinase-1 (ROCK1) phosphorylates a series of substrates that trigger downstream signaling pathways, affecting multiple cellular processes, including cell migration, communication, and proliferation. The present study investigated the role of ROCK1 in diabetic wound healing and molecular mechanisms. Our results showed that ROCK1 expression significantly increased in wound granulation tissues in diabetic patients, streptozotocin (STZ)-induced diabetic mice, and db/db diabetic mice. Wound healing and blood perfusion were dose-dependently improved by the ROCK1 inhibitor fasudil in diabetic mice. In endothelial cells, fasudil and ROCK1 siRNA significantly elevated the phosphorylation of adenosine monophosphate-activated protein kinase at Thr172 (pThr172-AMPKα), the activity of endothelial nitric oxide synthase (eNOS), and suppressed the levels of mitochondrial reactive oxygen species (mtROS) and nitrotyrosine formation. Experiments using integrated bioinformatics analysis and coimmunoprecipitation established that ROCK1 inhibited pThr172-AMPKα by binding to receptor-interacting serine/threonine kinase 4 (RIPK4). These results suggest that fasudil accelerated wound repair and improved angiogenesis at least partially through the ROCK1/RIPK4/AMPK pathway. Fasudil may be a potential treatment for refractory wounds in diabetic patients.

2.
Eur J Pharmacol ; 916: 174603, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34793771

RESUMO

Acute kidney injury (AKI) is a serious threat to human health. Clinically, ischemia-reperfusion (I/R) injury is considered one of the most common contributors to AKI. Emodin has been reported to alleviate I/R injury in the heart, brain, and small intestine in rats and mice through its anti-inflammatory effects. The present study investigated whether emodin improved AKI induced by I/R and elucidated the molecular mechanisms. We used a mouse model of renal I/R injury and human renal tubular epithelial cell model of hypoxia/reoxygenation (H/R) injury. Ischemia/reperfusion resulted in renal dysfunction. Pretreatment with emodin ameliorated renal injury in mice following I/R injury. Emodin reduced mitochondrial-mediated apoptosis, suppressed the overproduction of mitochondrial reactive oxygen species and accelerated the recovery of adenosine triphosphate both in vivo and in vitro. Emodin prevented mitochondrial fission and restored the balance of mitochondrial dynamics. The phosphorylation of dynamin-related protein 1 (DRP1) at Ser616, a master regulator of mitochondrial fission, was upregulated in both models of I/R and H/R injury, and this upregulation was blocked by emodin. Using computational cognate protein kinase prediction and specific kinase inhibitors, we found that emodin inhibited the phosphorylation of calcium/calmodulin-dependent protein kinase II (https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1554), thereby inhibiting its kinase activity and reducing the phosphorylation of DRP1 at Ser616. The results demonstrated that emodin pretreatment could protect renal function by improving mitochondrial dysfunction induced by I/R.


Assuntos
Injúria Renal Aguda/prevenção & controle , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Dinaminas/antagonistas & inibidores , Emodina/farmacologia , Dinâmica Mitocondrial/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Injúria Renal Aguda/patologia , Animais , Apoptose/efeitos dos fármacos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Dinaminas/metabolismo , Emodina/uso terapêutico , Humanos , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Substâncias Protetoras/uso terapêutico , Traumatismo por Reperfusão/patologia
3.
Clin Immunol ; 228: 108751, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33974996

RESUMO

Tumor-infiltrating immune cells (TIICs) and immune-related genes (IRGs) of melanoma are associated with prognosis. However, whether the combination of TIICs and IRGs can be used as prognostic clinical biomarkers are still unknown. Here, we downloaded transcription profile of melanoma from TCGA. Then, three TIICs and four IRGs that associated with the overall survival were used to constructed the Immune Cell Score (ICS) and Immune Gene Score (IGS) respectively. Next, to improve the accuracy of ICS and IGS for melanoma prognostic, we combined the ICS and IGS constructed the Immune Cell and Gene Score (ICGS) model. ICGS had higher accuracy and predictive ability than ICS or IGS. Meanwhile, ICGS model reliability was validated by two independent datasets of melanoma. Functional enrichment and protein-protein interaction network analysis based on ICGS were performed to identify T cell mediated immune and inflammatory response are highly associated with melanoma.


Assuntos
Biomarcadores , Melanoma/etiologia , Melanoma/mortalidade , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Imunidade/genética , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Melanoma/diagnóstico , Prognóstico , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Fatores de Risco , Transdução de Sinais , Transcriptoma
4.
Br J Pharmacol ; 177(2): 432-448, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31655022

RESUMO

BACKGROUND AND PURPOSE: Growing evidence indicates targeting mitochondrial dynamics and biogenesis could accelerate recovery from renal ischemia-reperfusion (I/R) injury, but the underlying mechanisms remain elusive. Transcription factor forkhead box O1 (FOXO1) is a key regulator of mitochondrial homeostasis and plays a pathological role in the progression of renal disease. EXPERIMENTAL APPROACH: A mouse model of renal I/R injury and a hypoxia/reoxygenation (H/R) injury model for human renal tubular epithelial cells were used. KEY RESULTS: I/R injury up-regulated renal expression of FOXO1 and treatment with FOXO1-selective inhibitor AS1842856 prior to I/R injury decreased serum urea nitrogen, serum creatinine and the tubular damage score after injury. Post-I/R injury AS1842856 treatment could also ameliorate renal function and improve the survival rate of mice following injury. AS1842856 administration reduced mitochondrial-mediated apoptosis, suppressed the overproduction of mitochondrial ROS and accelerated recovery of ATP both in vivo and in vitro. Additionally, FOXO1 inhibition improved mitochondrial biogenesis and suppressed mitophagy. Expression of PPAR-γ coactivator 1α (PGC-1α), a master regulator of mitochondrial biogenesis, was down-regulated in both I/R and H/R injury, which could be abrogated by FOXO1 inhibition. Experiments using integrated bioinformatics analysis and coimmunoprecipitation established that FOXO1 inhibited PGC-1α transcription by competing with cAMP-response element binding protein (CREB) for its binding to transcriptional coactivators CREBBP/EP300 (CBP/P300). CONCLUSION AND IMPLICATIONS: These findings suggested that FOXO1 was critical to maintain mitochondrial function in renal tubular epithelial cells and FOXO1 may serve as a therapeutic target for pharmacological intervention in renal I/R injury.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteína Forkhead Box O1/antagonistas & inibidores , Nefropatias/prevenção & controle , Túbulos Renais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Quinolonas/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Proteína Forkhead Box O1/metabolismo , Humanos , Nefropatias/metabolismo , Nefropatias/patologia , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitofagia/efeitos dos fármacos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais
5.
Biochim Biophys Acta Mol Basis Dis ; 1864(7): 2481-2494, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29654945

RESUMO

Diabetes-induced endothelial cell (EC) dysfunction and neovascularization impairment constitute vascular complications with limited treatment regimens. Transcription factor FOXO1 is a key angiogenic regulator and plays a pathologic role in progression of diabetes. The present study was designed to determine the involvement of FOXO1 in impaired EC function and post-ischemic neovascularization in diabetes and investigate underlying mechanisms. We found that FOXO1-selective inhibitor AS1842856 improved blood flow recovery and capillary density in ischemic hindlimb, and rescued the delay of wound closure with a concomitant augmentation of mean perfusion rate in diabetic mice. In vitro, treatment with AS1842856 or FOXO1 siRNA abrogated high glucose-induced apoptosis and ameliorated capillary tube formation in human umbilical vein endothelial cells (HUVECs). FOXO1 inhibition relieved alterations in mitochondrial networks and significantly suppressed the overproduction of mitochondrial reactive oxygen species (mtROS) induced by high glucose in ECs. Expression of dynamin-related protein-1 (Drp1) and phosphorylation at Ser616, a protein required for mitochondrial fission, were enhanced by hyperglycemia, which could be neutralized by FOXO1 inhibition. Moreover, the transcription of Rho-associated coiled-coil containing protein kinase 1 (ROCK1), which phosphorylates Drp1 at Ser616, was shown by luciferase assay to be directly regulated by FOXO1. These findings suggested that FOXO1 is critical to preserve mitochondrial quantity and function in ECs, and FOXO1 may serve as a therapeutic target for microvascular complications of diabetes.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Angiopatias Diabéticas/metabolismo , Dinaminas/metabolismo , Endotélio Vascular/metabolismo , Proteína Forkhead Box O1/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Neovascularização Fisiológica , Quinases Associadas a rho/metabolismo , Animais , Diabetes Mellitus Experimental/patologia , Angiopatias Diabéticas/patologia , Endotélio Vascular/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Mitocôndrias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA