RESUMO
Cancer-associated mutations in the guanosine triphosphatase (GTPase) RHOA are found at different locations from the mutational hotspots in the structurally and biochemically related RAS. Tyr42-to-Cys (Y42C) and Leu57-to-Val (L57V) substitutions are the two most prevalent RHOA mutations in diffuse gastric cancer (DGC). RHOAY42C exhibits a gain-of-function phenotype and is an oncogenic driver in DGC. Here, we determined how RHOAL57V promotes DGC growth. In mouse gastric organoids with deletion of Cdh1, which encodes the cell adhesion protein E-cadherin, the expression of RHOAL57V, but not of wild-type RHOA, induced an abnormal morphology similar to that of patient-derived DGC organoids. RHOAL57V also exhibited a gain-of-function phenotype and promoted F-actin stress fiber formation and cell migration. RHOAL57V retained interaction with effectors but exhibited impaired RHOA-intrinsic and GAP-catalyzed GTP hydrolysis, which favored formation of the active GTP-bound state. Introduction of missense mutations at KRAS residues analogous to Tyr42 and Leu57 in RHOA did not activate KRAS oncogenic potential, indicating distinct functional effects in otherwise highly related GTPases. Both RHOA mutants stimulated the transcriptional co-activator YAP1 through actin dynamics to promote DGC progression; however, RHOAL57V additionally did so by activating the kinases IGF1R and PAK1, distinct from the FAK-mediated mechanism induced by RHOAY42C. Our results reveal that RHOAL57V and RHOAY42C drive the development of DGC through distinct biochemical and signaling mechanisms.
Assuntos
Neoplasias Gástricas , Animais , Humanos , Camundongos , Actinas , Guanosina Trifosfato , Quinases Ativadas por p21 , Proteínas Proto-Oncogênicas p21(ras) , Receptor IGF Tipo 1 , Proteína rhoA de Ligação ao GTP/genética , Transdução de Sinais , Neoplasias Gástricas/genéticaRESUMO
Missense mutations at the three hotspots in the guanosine triphosphatase (GTPase) RAS-Gly12, Gly13, and Gln61 (commonly known as G12, G13, and Q61, respectively)-occur differentially among the three RAS isoforms. Q61 mutations in KRAS are infrequent and differ markedly in occurrence. Q61H is the predominant mutant (at 57%), followed by Q61R/L/K (collectively 40%), and Q61P and Q61E are the rarest (2 and 1%, respectively). Probability analysis suggested that mutational susceptibility to different DNA base changes cannot account for this distribution. Therefore, we investigated whether these frequencies might be explained by differences in the biochemical, structural, and biological properties of KRASQ61 mutants. Expression of KRASQ61 mutants in NIH 3T3 fibroblasts and RIE-1 epithelial cells caused various alterations in morphology, growth transformation, effector signaling, and metabolism. The relatively rare KRASQ61E mutant stimulated actin stress fiber formation, a phenotype distinct from that of KRASQ61H/R/L/P, which disrupted actin cytoskeletal organization. The crystal structure of KRASQ61E was unexpectedly similar to that of wild-type KRAS, a potential basis for its weak oncogenicity. KRASQ61H/L/R-mutant pancreatic ductal adenocarcinoma (PDAC) cell lines exhibited KRAS-dependent growth and, as observed with KRASG12-mutant PDAC, were susceptible to concurrent inhibition of ERK-MAPK signaling and of autophagy. Our results uncover phenotypic heterogeneity among KRASQ61 mutants and support the potential utility of therapeutic strategies that target KRASQ61 mutant-specific signaling and cellular output.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Actinas , Carcinoma Ductal Pancreático/genética , GTP Fosfo-Hidrolases/genética , Humanos , Mutação , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias PancreáticasRESUMO
The recent development of mutant-selective inhibitors for the oncogenic KRASG12C allele has generated considerable excitement. These inhibitors covalently engage the mutant C12 thiol located within the phosphoryl binding loop of RAS, locking the KRASG12C protein in an inactive state. While clinical trials of these inhibitors have been promising, mechanistic questions regarding the reactivity of this thiol remain. Here, we show by NMR and an independent biochemical assay that the pKa of the C12 thiol is depressed (pKa â¼7.6), consistent with susceptibility to chemical ligation. Using a validated fluorescent KRASY137W variant amenable to stopped-flow spectroscopy, we characterized the kinetics of KRASG12C fluorescence changes upon addition of ARS-853 or AMG 510, noting that at low temperatures, ARS-853 addition elicited both a rapid first phase of fluorescence change (attributed to binding, Kd = 36.0 ± 0.7 µM) and a second, slower pH-dependent phase, taken to represent covalent ligation. Consistent with the lower pKa of the C12 thiol, we found that reversible and irreversible oxidation of KRASG12C occurred readily both in vitro and in the cellular environment, preventing the covalent binding of ARS-853. Moreover, we found that oxidation of the KRASG12C Cys12 to a sulfinate altered RAS conformation and dynamics to be more similar to KRASG12D in comparison to the unmodified protein, as assessed by molecular dynamics simulations. Taken together, these findings provide insight for future KRASG12C drug discovery efforts, and identify the occurrence of G12C oxidation with currently unknown biological ramifications.
Assuntos
Proteínas Proto-Oncogênicas p21(ras) , Compostos de Sulfidrila , Cinética , Mutação , Oxirredução , Proteínas Proto-Oncogênicas p21(ras)/genéticaRESUMO
Directly inhibiting oncogenic RAS proteins has proven to be an arduous task, as after more than thirty years of intensive investigation, no clinically relevant therapies exist. Recently, two classes of selective small molecule inhibitors that target a cysteine-containing RAS mutant have been developed, representing the first directed approaches to specifically inhibit an oncogenic KRAS mutant. In this mini-review, we first assess the development and targeting strategies associated with novel cysteine-directed RAS inhibitors. Next, we describe the variable oncogenic potency of the KRAS G12C mutant when compared to other KRAS G12 mutants. Lastly, we evaluate how the redox properties of KRAS G12C may play a role in differential signaling and tumorigenic potency of the oncogene, the efficacy of small molecules targeting this specific RAS mutant and further development of directed oncogenic RAS inhibitors.
Assuntos
Proteínas ras/metabolismo , Regulação Alostérica/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Cisteína/metabolismo , Guanosina Difosfato/análogos & derivados , Guanosina Difosfato/metabolismo , Guanosina Difosfato/uso terapêutico , Humanos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Proteínas ras/antagonistas & inibidores , Proteínas ras/genéticaRESUMO
UNLABELLED: NRAS mutation at codons 12, 13, or 61 is associated with transformation; yet, in melanoma, such alterations are nearly exclusive to codon 61. Here, we compared the melanoma susceptibility of an NrasQ61R knock-in allele to similarly designed KrasG12D and NrasG12D alleles. With concomitant p16INK4a inactivation, KrasG12D or NrasQ61R expression efficiently promoted melanoma in vivo, whereas NrasG12D did not. In addition, NrasQ61R mutation potently cooperated with Lkb1/Stk11 loss to induce highly metastatic disease. Functional comparisons of NrasQ61R and NrasG12D revealed little difference in the ability of these proteins to engage PI3K or RAF. Instead, NrasQ61R showed enhanced nucleotide binding, decreased intrinsic GTPase activity, and increased stability when compared with NrasG12D. This work identifies a faithful model of human NRAS-mutant melanoma, and suggests that the increased melanomagenecity of NrasQ61R over NrasG12D is due to heightened abundance of the active, GTP-bound form rather than differences in the engagement of downstream effector pathways. SIGNIFICANCE: This work explains the curious predominance in human melanoma of mutations of codon 61 of NRAS over other oncogenic NRAS mutations. Using conditional "knock-in" mouse models, we show that physiologic expression of NRASQ61R, but not NRASG12D, drives melanoma formation.