Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(7)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39066301

RESUMO

Primary bone malignancies, including osteosarcoma (OS), are rare but aggressive. Current OS treatment, involving surgical resection and chemotherapy, has improved survival for non-metastatic cases but remains ineffective for recurrent or metastatic OS. Oncolytic viral therapy (OVT) is a promising alternative, using naturally occurring or genetically modified viruses to selectively target and lyse cancer cells and induce a robust immune response against remaining OS cells. Various oncolytic viruses (OVs), such as adenovirus, herpes simplex virus, and measles virus, have demonstrated efficacy in preclinical OS models. Combining OVT with other therapeutics, such as chemotherapy or immunotherapy, may further improve outcomes. Despite these advances, challenges in reliability of preclinical models, safety, delivery, and immune response must be addressed to optimize OVT for clinical use. Future research should focus on refining delivery methods, exploring combination treatments, and clinical trials to ensure OVT's efficacy and safety for OS. Overall, OVT represents a novel approach with the potential to drastically improve survival outcomes for patients with OS.


Assuntos
Neoplasias Ósseas , Terapia Viral Oncolítica , Vírus Oncolíticos , Osteossarcoma , Osteossarcoma/terapia , Terapia Viral Oncolítica/métodos , Humanos , Vírus Oncolíticos/genética , Vírus Oncolíticos/fisiologia , Neoplasias Ósseas/terapia , Animais , Terapia Combinada
2.
Curr Oncol Rep ; 25(12): 1457-1465, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37999825

RESUMO

PURPOSE OF REVIEW: This review summarizes current findings regarding limb amputation within the context of cancer, especially in osteosarcomas and other bony malignancies. We seek to answer the question of how amputation is utilized in the contemporary management of cancer as well as explore current advances in limb-sparing techniques. RECENT FINDINGS: The latest research on amputation has been sparse given its extensive history and application. However, new research has shown that rotationplasty, osseointegration, targeted muscle reinnervation (TMR), and regenerative peripheral nerve interfaces (RPNI) can provide patients with better functional outcomes than traditional amputation. While limb-sparing surgeries are the mainstay for managing musculoskeletal malignancies, limb amputation is useful as a palliative technique or as a primary treatment modality for more complex cancers. Currently, rotationplasty and osseointegration have been valuable limb-sparing techniques with osseointegration continuing to develop in recent years. TMR and RPNI have also been of interest in the modern management of patients requiring full or partial amputations, allowing for better control over myoelectric prostheses.


Assuntos
Membros Artificiais , Neoplasias Ósseas , Osteossarcoma , Humanos , Amputação Cirúrgica , Neoplasias Ósseas/cirurgia
3.
Commun Biol ; 6(1): 374, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029220

RESUMO

Cellular metabolic dysregulation is a consequence of SARS-CoV-2 infection that is a key determinant of disease severity. However, how metabolic perturbations influence immunological function during COVID-19 remains unclear. Here, using a combination of high-dimensional flow cytometry, cutting-edge single-cell metabolomics, and re-analysis of single-cell transcriptomic data, we demonstrate a global hypoxia-linked metabolic switch from fatty acid oxidation and mitochondrial respiration towards anaerobic, glucose-dependent metabolism in CD8+Tc, NKT, and epithelial cells. Consequently, we found that a strong dysregulation in immunometabolism was tied to increased cellular exhaustion, attenuated effector function, and impaired memory differentiation. Pharmacological inhibition of mitophagy with mdivi-1 reduced excess glucose metabolism, resulting in enhanced generation of SARS-CoV-2- specific CD8+Tc, increased cytokine secretion, and augmented memory cell proliferation. Taken together, our study provides critical insight regarding the cellular mechanisms underlying the effect of SARS-CoV-2 infection on host immune cell metabolism, and highlights immunometabolism as a promising therapeutic target for COVID-19 treatment.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Linfócitos T CD8-Positivos , Tratamento Farmacológico da COVID-19
4.
J Vis Exp ; (157)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32250356

RESUMO

Allogeneic bone marrow transplantation (BMT) is an effective therapy for hematological malignancies due to the graft-versus-leukemia (GVL) effect to eradicate tumors. However, its application is limited by the development of graft-versus-host disease (GVHD), a major complication of BMT. GVHD is evoked when T-cells in the donor grafts recognizealloantigen expressed by recipient cells and mount unwanted immunological attacks against recipient healthy tissues. Thus, traditional therapies are designed to suppress donor T-cell alloreactivity. However, these approaches substantially impair the GVL effect so that the recipient's survival is not improved. Understanding the effects of therapeutic approaches on BMT, GVL, and GVHD, is thus essential. Due to the antigen-presenting and cytokine-secreting capacities to stimulate donor T-cells, recipient dendritic cells (DCs) play a significant role in the induction of GVHD. Therefore, targeting recipient DCs becomes a potential approach for controlling GVHD. This work provides a description of a novel BMT platform to investigate how host DCs regulate GVH and GVL responses after transplantation. Also presented is an effective BMT model to study the biology of GVHD and GVL after transplantation.


Assuntos
Transplante de Medula Óssea , Células Dendríticas/imunologia , Doença Enxerto-Hospedeiro/imunologia , Linfócitos T/imunologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA