Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 221: 109-118, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29660468

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Trichilia catigua A. Juss (Meliaceae) preparations have been used in folk medicine to alleviate fatigue, stress, and improve memory. Antinociceptive, antiinflammatory, and in vitro neuroprotective effects have been observed in animals. Cerebral ischemia/reperfusion (I/R) leads to severe neuropsychological deficits that are largely associated with oxidative stress, inflammation and neurodegeneration. We reported previously that an ethyl-acetate fraction (EAF) of T. catigua reduced brain ischemia-induced learning and memory impairments in the absence of histological protection. AIM OF THE STUDY: Continuing those studies, here we aimed to investigate the antioxidant and antiinflammatory properties of T. catigua in an in vivo model of I/R. MATERIAL AND METHODS: Rats were subjected to 15 min of brain ischemia (4-VO model) followed by up to 15 days of reperfusion. Vehicle was given by gavage 30 min before ischemia and at 1 h of reperfusion. In a first experiment, brain ischemia-induced changes in oxidative stress markers, i.e., reduced glutathione (GSH), oxidized glutathione (GSSG), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and protein carbonyl groups (PCGs) were measured on days 1, 3, and 5 post-ischemia. Similar time course analysis was done for neuroinflammation markers, i.e., microglia (OX42 immunorreactivity) and astrocytes (GFAP immunorreactivity), in the hippocampus. In a second experiment, the time points at which these markers of oxidative stress and neuroinflammation peaked were used to test the effects of T. catigua (400 mg/kg, p.o.). RESULTS: Oxidative stress markers peaked on day 1 post-ischemia. GSH decreased (-23.2%) while GSSG increased (+ 71.1%), which yielded a significant reduction in the GSH/GSSG ratio (-39.1%). The activity of CAT was largely reduced by ischemia (-54.6% to -65.1%), while the concentration of PCG almost doubled in the brain of ischemic rats (+99.10%) in comparison to sham. Treatment with the EAF of T. catigua normalized these changes in oxidative markers to the control levels (GSH: +27.5%; GSSG: -23.8%; GSH/GSSG: +44.6%; PCG: -80.3%). In the hippocampus, neuroinflammation markers peaked on day 5 post-ischemia, with microglial and astrocytic responses increasing to 54.8% and 37.1%, respectively. The elevation in glial cells response was completely prevented by EAF. CONCLUSION: These results demonstrate that T. catigua has both antioxidant and antiinflammatory activities after transient global cerebral ischemia in rats, which may contribute to the previously reported memory protective effect of T. catigua.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Meliaceae , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Acetatos/química , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Isquemia Encefálica/metabolismo , Antígeno CD11b/metabolismo , Catalase/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Glutationa/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/farmacologia , Caules de Planta/química , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Solventes/química , Superóxido Dismutase/metabolismo
2.
Behav Brain Res ; 337: 173-182, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-28919157

RESUMO

We originally reported that an ethyl-acetate fraction (EAF) of Trichilia catigua prevented the impairment of water maze learning and hippocampal neurodegeneration after transient global cerebral (TGCI) in mice. We extended that previous study by evaluating whether T. catigua (i) prevents the loss of long-term retrograde memory assessed in the aversive radial maze (AvRM), (ii) confers hippocampal and cortical neuroprotection, and (iii) mitigates oxidative stress and neuroinflammation in rats that are subjected to the four vessel occlusion (4-VO) model of TGCI. In the first experiment, naive rats were trained in the AvRM and then subjected to TGCI. The EAF was administered orally 30min before and 1h after TGCI, and administration continued once per day for 7days post-ischemia. In the second experiment, the EAF was administered 30min before and 1h after TGCI, and protein carbonylation and myeloperoxidase (MPO) activity were assayed 24h and 5days later, respectively. Retrograde memory performance was assessed 8, 15, and 21days post-ischemia. Ischemia caused persistent retrograde amnesia, and this effect was prevented by T. catigua. This memory protection (or preservation) persisted even after the treatment was discontinued, despite the absence of histological neuroprotection. Protein carbonyl group content and MPO activity increased around 43% and 100%, respectively, after TGCI, which were abolished by the EAF of T. catigua. The administration of EAF did not coincide with the days of memory testing. The data indicate that antioxidant and/or antiinflammatory actions in the early phase of ischemia/reperfusion contribute to the long-term antiamnesic effect of T. catigua.


Assuntos
Amnésia Retrógrada/tratamento farmacológico , Amnésia Retrógrada/etiologia , Isquemia Encefálica/complicações , Inflamação/tratamento farmacológico , Inflamação/etiologia , Meliaceae/química , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Animais , Biomarcadores/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Extratos Vegetais/química , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA