Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(23): 15154-15166, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38808726

RESUMO

Platinum ditelluride (1T-PtTe2) is a two-dimensional (2D) topological semimetal with a distinctive band structure and flexibility of van der Waals integration as a promising candidate for future electronics and spintronics. Although the synthesis of large-scale, uniform, and highly crystalline films of 2D semimetals system is a prerequisite for device application, the synthetic methods meeting these criteria are still lacking. Here, we introduce an approach to synthesize highly oriented 2D topological semimetal PtTe2 using a thermally assisted conversion called tellurization, which is a cost-efficient method compared to the other epitaxial deposition methods. We demonstrate that achieving highly crystalline 1T-PtTe2 using tellurization is not dependent on epitaxy but rather relies on two critical factors: (i) the crystallinity of the predeposited platinum (Pt) film and (ii) the surface coverage ratio of the Pt film considering lateral lattice expansion during transformation. By optimizing the surface coverage ratio of the epitaxial Pt film, we successfully obtained 2 in. wafer-scale uniformity without in-plane misalignment between antiparallelly oriented domains. The electronic band structure of 2D topological PtTe2 is clearly resolved in momentum space, and we observed an interesting 6-fold gapped Dirac cone at the Fermi surface. Furthermore, ultrahigh electrical conductivity down to ∼3.8 nm, which is consistent with that of single crystal PtTe2, was observed, proving its ultralow defect density.

2.
Adv Mater ; 36(21): e2312013, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38270245

RESUMO

The recent discovery of room-temperature ferromagnetism in 2D van der Waals (vdW) materials, such as Fe3GaTe2 (FGaT), has garnered significant interest in offering a robust platform for 2D spintronic applications. Various fundamental operations essential for the realization of 2D spintronics devices are experimentally confirmed using these materials at room temperature, such as current-induced magnetization switching or tunneling magnetoresistance. Nevertheless, the potential applications of magnetic skyrmions in FGaT systems at room temperature remain unexplored. In this work, the current-induced generation of magnetic skyrmions in FGaT flakes employing high-resolution magnetic transmission soft X-ray microscopy is introduced, supported by a feasible mechanism based on thermal effects. Furthermore, direct observation of the current-induced magnetic skyrmion motion at room temperature in FGaT flakes is presented with ultra-low threshold current density. This work highlights the potential of FGaT as a foundation for room-temperature-operating 2D skyrmion device applications.

3.
Sci Rep ; 13(1): 19357, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938612

RESUMO

Controlling the direction of magnetization with an electric current, rather than a magnetic field, is a powerful technique in spintronics. Spin-orbit torque, which generates an effective magnetic field from the injected current, is a promising method for this purpose. Here we show an approach for quantifying the magnitude of spin-orbit torque from a single magnetic image. To achieve this, we deposited two concentric electrodes on top of the magnetic sample to flow a radial current. By counterbalancing the current effect with an external magnetic field, we can create a stable circular magnetization state. We measure the magnitude of spin-orbit torque from the stable radius, providing a new tool for characterizing spin-orbit torque.

4.
ACS Appl Mater Interfaces ; 15(42): 49329-49337, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37819637

RESUMO

Field-effect transistor-based biosensors have gained increasing interest due to their reactive surface to external stimuli and the adaptive feedback required for advanced sensing platforms in biohybrid neural interfaces. However, complex probing methods for surface functionalization remain a challenge that limits the industrial implementation of such devices. Herein, a simple, label-free biosensor based on molybdenum oxide (MoO3) with dopamine-regulated plasticity is demonstrated. Dopamine oxidation facilitated locally at the channel surface initiates a charge transfer mechanism between the molecule and the oxide, altering the channel conductance and successfully emulating the tunable synaptic weight by neurotransmitter activity. The oxygen level of the channel is shown to heavily affect the device's electrochemical properties, shifting from a nonreactive metallic characteristic to highly responsive semiconducting behavior. Controllable responsivity is achieved by optimizing the channel's dimension, which allows the devices to operate in wide ranges of dopamine concentration, from 100 nM to sub-mM levels, with excellent selectivity compared with K+, Na+, and Ca2+.

5.
Adv Mater ; 35(9): e2208881, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36511234

RESUMO

The paradigm shift of information carriers from charge to spin has long been awaited in modern electronics. The invention of the spin-information transistor is expected to be an essential building block for the future development of spintronics. Here, a proof-of-concept experiment of a magnetic skyrmion transistor working at room temperature, which has never been demonstrated experimentally, is introduced. With the spatially uniform control of magnetic anisotropy, the shape and topology of a skyrmion when passing the controlled area can be maintained. The findings will open a new route toward the design and realization of skyrmion-based spintronic devices in the near future.

6.
Nano Lett ; 22(21): 8430-8436, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36282733

RESUMO

Due to its topological protection, the magnetic skyrmion has been intensively studied for both fundamental aspects and spintronics applications. However, despite recent advancements in skyrmion research, the deterministic creation of isolated skyrmions in a generic perpendicularly magnetized film is still one of the most essential and challenging techniques. Here, we present a method to create magnetic skyrmions in typical perpendicular magnetic anisotropy (PMA) films by applying a magnetic field pulse and a method to determine the magnitude of the required external magnetic fields. Furthermore, to demonstrate the usefulness of this result for future skyrmion research, we also experimentally study the PMA dependence on the minimum size of skyrmions. Although field-driven skyrmion generation is unsuitable for device application, this result can provide an easier approach for obtaining isolated skyrmions, making skyrmion-based research more accessible.

7.
Adv Mater ; 34(40): e2203275, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35985670

RESUMO

A scaling law elucidates the universality in nature, presiding over many physical phenomena which seem unrelated. Thus, exploring the universality class of scaling law in a particular system enlightens its physical nature in relevance to other systems and sometimes unearths an unprecedented new dynamic phase. Here, the dynamics of weakly driven magnetic skyrmions are investigated, and its scaling law is compared with the motion of a magnetic domain wall (DW) creep. This study finds that the skyrmion does not follow the scaling law of the DW creep in 2D space but instead shows a hopping behavior similar to that of the particle-like DW in 1D confinement. In addition, the hopping law satisfies even when a topological charge of the skyrmion is removed. Therefore, the distinct scaling behavior between the magnetic skyrmion and the DW stems from a general principle beyond the topological charge. This study demonstrates that the hopping behavior of skyrmions originates from the bottleneck process induced by DW segments with diverging collective lengths, which is inevitable in any closed-shape spin structure in 2D. This work reveals that the structural topology of magnetic texture determines the universality class of its weakly driven motion, which is distinguished from the universality class of magnetic DW creep.

8.
Sci Rep ; 11(1): 20970, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697314

RESUMO

The various spiral structures that exist in nature inspire humanity because of their morphological beauty, and spiral structures are used in various fields, including architecture, engineering, and art. Spiral structures have their own winding directions, and in most spirals, it is difficult to reverse the predetermined winding direction. Here, we show that a rotating spiral exists in magnetic systems for which the winding direction can be easily reversed. A magnetization vector basically has a spiral motion combining a precessional and a damping motion. The application of these basic mechanics to a system composed of magnetic vectors that are affected by a radial current and the Dzyaloshinskii-Moriya interaction forms the rotating magnetic spiral. The winding direction of the magnetic spiral has its own stability, but the direction can be changed using an external magnetic field. This magnetic spiral has a finite size, and the magnetic domain is destroyed at the edge of the spiral, which can create magnetic skyrmions.

9.
Adv Mater ; 33(45): e2104406, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34569658

RESUMO

The magnetic skyrmion is a topologically protected spin texture that has attracted much attention as a promising information carrier because of its distinct features of suitability for high-density storage, low power consumption, and stability. One of the skyrmion devices proposed so far is the skyrmion racetrack memory, which is the skyrmion version of the domain-wall racetrack memory. For application in devices, skyrmion racetrack memory requires electrical generation, deletion, and displacement of isolated skyrmions. Despite the progress in experimental demonstrations of skyrmion generation, deletion, and displacement, these three operations have yet to be realized in one device. Here, a route for generating and deleting isolated skyrmion-bubbles through vertical current injection with an explanation of its microscopic origin is presented. By combining the proposed skyrmion-bubble generation/deletion method with the spin-orbit-torque-driven skyrmion shift, a proof-of-concept experimental demonstration of the skyrmion racetrack memory operation in a three-terminal device structure is provided.

10.
Adv Sci (Weinh) ; 8(17): e2100908, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34263557

RESUMO

Magnetic domain wall (DW) motion in perpendicularly magnetized materials is drawing increased attention due to the prospect of new type of information storage devices, such as racetrack memory. To augment the functionalities of DW motion-based devices, it is essential to improve controllability over the DW motion. Other than electric current, which is known to induce unidirectional shifting of a train of DWs, an application of in-plane magnetic field also enables the control of DW dynamics by rotating the DW magnetization and consequently modulating the inherited chiral DW structure. Applying an external bias field, however, is not a viable approach for the miniaturization of the devices as the external field acts globally. Here, the programmable exchange-coupled DW motion in the antiferromagnet (AFM)/ferromagnet (FM) system is demonstrated, where the role of an external in-plane field is replaced by the exchange bias field from AFM layer, enabling the external field-free modulations of DW motions. Interestingly, the direction of the exchange bias field can also be reconfigured by simply injecting spin currents through the device, enabling electrical and programmable operations of the device. Furthermore, the result inspires a prototype DW motion-based device based on the AFM/FM heterostructure, that could be easily integrated in logic devices.

11.
Nano Lett ; 20(11): 7803-7810, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33054243

RESUMO

Coupling of spin and heat currents enables the spin Nernst effect, the thermal generation of spin currents in nonmagnets that have strong spin-orbit interaction. Analogous to the spin Hall effect that electrically generates spin currents and associated electrical spin-orbit torques (SOTs), the spin Nernst effect can exert thermal SOTs on an adjacent magnetic layer and control the magnetization direction. Here, the thermal SOT caused by the spin Nernst effect is experimentally demonstrated in W/CoFeB/MgO structures. It is found that an in-plane temperature gradient across the sample generates a magnetic torque and modulates the switching field of the perpendicularly magnetized CoFeB. The W thickness dependence suggests that the torque originates mainly from thermal spin currents induced in W. Moreover, the thermal SOT reduces the critical current for SOT-induced magnetization switching, demonstrating that it can be utilized to control the magnetization in spintronic devices.

12.
Nat Mater ; 19(10): 1124, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32879442

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

13.
Nat Mater ; 19(9): 980-985, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32601483

RESUMO

Antiferromagnetic spin waves have been predicted to offer substantial functionalities for magnonic applications due to the existence of two distinct polarizations, the right-handed and left-handed modes, as well as their ultrafast dynamics. However, experimental investigations have been hampered by the field-immunity of antiferromagnets. Ferrimagnets have been shown to be an alternative platform to study antiferromagnetic spin dynamics. Here we investigate thermally excited spin waves in ferrimagnets across the magnetization compensation and angular momentum compensation temperatures using Brillouin light scattering. Our results show that right-handed and left-handed modes intersect at the angular momentum compensation temperature where pure antiferromagnetic spin waves are expected. A field-induced shift of the mode-crossing point from the angular momentum compensation temperature and the gyromagnetic reversal reveal hitherto unrecognized properties of ferrimagnetic dynamics. We also provide a theoretical understanding of our experimental results. Our work demonstrates important aspects of the physics of ferrimagnetic spin waves and opens up the attractive possibility of ferrimagnet-based magnonic devices.

14.
ACS Energy Lett ; 4(8): 1947-1953, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31763462

RESUMO

Among the main appeals of single-atom catalysts are the ultimate efficiency of material utilization and the well-defined nature of the active sites, holding the promise of rational catalyst design. A major challenge is the stable decoration of various substrates with a high density of individually dispersed and uniformly active monatomic sites. Transition metal chalcogenides (TMCs) are broadly investigated catalysts, limited by the relative inertness of their pristine basal plane. We propose that TMC single layers modified by substitutional heteroatoms can harvest the synergistic benefits of stably anchored single-atom catalysts and activated TMC basal planes. These solid-solution TMC catalysts offer advantages such as simple and versatile synthesis, unmatched active site density, and a stable and well-defined single-atom active site chemical environment. The unique features of heteroatom-doped two-dimensional TMC crystals at the origin of their catalytic activity are discussed through the examples of various TMC single layers doped with individual oxygen heteroatoms.

15.
J Synchrotron Radiat ; 26(Pt 4): 1031-1036, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31274424

RESUMO

An overview is given of the soft X-ray photon-in/photon-out instruments on the free-electron laser (FEL) beamline at the Pohang Accelerator Laboratory, and selected commissioning results are presented. The FEL beamline provides a photon energy of 270 to 1200 eV, with an energy bandwidth of 0.44%, an energy of 200 µJ per pulse and a pulse width of <50 fs (full width at half-maximum). The estimated total time resolution between optical laser and X-ray pulses is <100 fs. Instruments for X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) have been set up. X-ray magnetic circular dichroism spectra for a Co/Pt multilayer film and RIXS spectra for α-Fe2O3(100) have been obtained and the performance of the spectrometer has been evaluated.

16.
Nanotechnology ; 30(24): 245701, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-30802888

RESUMO

Among two-dimensional (2D) layered van der Waals materials, ferromagnetic 2D materials can be useful for compact low-power spintronic applications. One promising candidate material is Fe3GeTe2 (FGT), which has a strong perpendicular magnetic anisotropy and relatively high Curie temperature. In this study, we confirmed that an oxide layer (O-FGT) naturally forms on top of exfoliated FGT and that an antiferromagnetic coupling (AFC) exists between FGT and O-FGT layers. From a first-principles calculation, oxide formation at the interface of each layer induces an AFC between the layers. An AFC causes a tailed hysteresis loop, where two-magnetization reversal curves are included, and a negative remanence magnetization at a certain temperature range.

17.
Sci Rep ; 9(1): 1331, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718576

RESUMO

The introduction of ferromagnetic order in topological insulators in general breaks the time-reversal symmetry and a gap is opened in topological surface bands. Various studies have focused on gap-opened magnetic topological insulators, because such modified band structures provide a promising platform for observing exotic quantum physics. However, the role of antiferromagnetic order in topological insulators is still controversial. In this report, we demonstrate that it is possible to restore the topological surface states by effectively reducing the antiferromagnetic ordering in Gd-substituted Bi2Te3. We successfully control the magnetic impurities via thermal treatments in ultra-high vacuum condition and observe apparent restoration of topological surface band dispersions. The microscopic mechanism of atomic rearrangements and the restoration process of topological surface states are unraveled by the combination of scanning tunneling microscopy measurements and density functional theory calculations. This work provides an effective way to control the magnetic impurities which is strongly correlated with topological surface states.

18.
Nat Commun ; 9(1): 5371, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30560877

RESUMO

Precise doping-profile engineering in van der Waals heterostructures is a key element to promote optimal device performance in various electrical and optical applications with two-dimensional layered materials. Here, we report tungsten diselenide- (WSe2) based pure vertical diodes with atomically defined p-, i- and n-channel regions. Externally modulated p- and n-doped layers are respectively formed on the bottom and the top facets of WSe2 single crystals by direct evaporations of high and low work-function metals platinum and gadolinium, thus forming atomically sharp p-i-n heterojunctions in the homogeneous WSe2 layers. As the number of layers increases, charge transport through the vertical WSe2 p-i-n heterojunctions is characterized by a series of quantum tunneling events; direct tunneling, Fowler-Nordheim tunneling, and Schottky emission tunneling. With optimally selected WSe2 thickness, our vertical heterojunctions show superb diode characteristics of an unprecedentedly high current density and low turn-on voltages while maintaining good current rectification.

19.
Nat Chem ; 10(12): 1246-1251, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30224684

RESUMO

The chemical inertness of the defect-free basal plane confers environmental stability to MoS2 single layers, but it also limits their chemical versatility and catalytic activity. The stability of pristine MoS2 basal plane against oxidation under ambient conditions is a widely accepted assumption however, here we report single-atom-level structural investigations that reveal that oxygen atoms spontaneously incorporate into the basal plane of MoS2 single layers during ambient exposure. The use of scanning tunnelling microscopy reveals a slow oxygen-substitution reaction, during which individual sulfur atoms are replaced one by one by oxygen, giving rise to solid-solution-type 2D MoS2-xOx crystals. Oxygen substitution sites present all over the basal plane act as single-atom reaction centres, substantially increasing the catalytic activity of the entire MoS2 basal plane for the electrochemical H2 evolution reaction.

20.
Nat Commun ; 9(1): 3788, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30224700

RESUMO

Current-induced magnetic domain wall (DW) motion is an important operating principle of spintronic devices. Injected current generates spin torques (STs) on the DWs in two ways. One is the spin transfer from magnetic domains to the walls by the current flowing in the magnet. Current flow in attached heavy metals also generates another ST because of the spin-Hall effect. Both phenomena explain the wall motions well; therefore, their respective contribution is an important issue. Here, we show the simultaneous measurement of both torques by using magnetic facet domains that form mountain-shaped domains with straight walls. When the STs and the external magnetic field push the walls in opposite directions, the walls should have equilibrium angles to create balanced states. Such angles can be modulated by an additional in-plane magnetic field. Angle measurements distinguish the STs because each torque has a distinct mechanism related to the DW structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA